人気の記事一覧

2017年 日本数学オリンピック本選 第3問 解答例

3週間前

2008年 日本数学オリンピック本選 第3問 解答例

4週間前

〈UBノートロジー〉ジオメトリック/幾何ノート

1か月前

HECPの4隅問題/UB geometric note

1か月前

2021年 日本数学オリンピック本選 第3問 解答例

6日前

大学共通テストと中学受験 ~進化する入試と変わらぬ本質~

LGC作問ノート

2か月前

2から3へ飛び、3から4へ飛ぶ時、桜色🌸はどう見えるだろうか

2023年 日本数学オリンピック本選 第2問 解答例

1か月前

ラングランズ・プログラムという数学の架け橋

8か月前

2002年 日本数学オリンピック本選 第1問 解答例

2か月前

2024/06/04(火) 日記。英語勉強系動画。中学幾何。2キロ近く減量。

コンパスは等距離を、定規は2点の位置の延長を描くものだ。角の3等分線は、この2つの操作の組み合わせによって描けない。 有理数と無理数のように、図形も「有理図形」「無理図形」のような呼び方をするとよいのではないか? 因みに無理図形は、無限回の操作を許す事で描くのが可能になる。

キャンプって何が楽しいの? 座標平面も複素平面もベクトルも使わずに、補助線を使って幾何の問題を解くようなもの? ならば楽しいか。

長方形が与えられている時、その面積の長さの線分を作図できるか? これ、面積であると考えたらハマる。一方の辺を他方倍に拡大することで可能になる。

角の三等分の不可能性は、次の数学デーで扱うのがいいかもしれない。

コンパスと定規で角の三等分が出来ないのに、線分の長さになら例えば 1/√2 にする事が出来るのは面白い。 数であれば逆演算で定義しなければならないものが、物によっては作れてしまう。コンパスと定規の幾何学は奥が深そうなので、ちょいと研究してみるのもいいかもしれない。

平面上の合同な図形は、平行移動・回転移動、対称移動の組み合わせで重ね合わせられると小学校で教員が言ってた。 図形が同じ向きや線対称でなければ実は回転移動一回で足りるし、無限遠点や平面上に回転軸を設けて良いなら、重ね合わせには回転移動しかいらない事になる。

資金600万から資産1億円に到達する方法(その4、幾何ブラウン運動で考える)

10か月前

簡単な幾何の問題

1年前

「おじゃめし円」とよばれているものについて

【パズル的数学】2次関数と図形の問題②~エレガントな別解を味わう~

好きな問題の紹介 (AMC2022 Day3)

2年前

東野圭吾にまなぶ創作術 | 作品を書き続けるために

朝っぱらからomc4bの水diffの幾何を眠くなるまで解いて幾何に触れてみようとするメモ(日記)

2年前

自分はオイラーの等式 e^πi=-1がなぜそんなに特殊な意味を持つのか理解してなかったが、eは解析の言葉、πは幾何の言葉、iは代数の言葉で、数学の三大分野 代数、幾何、解析をまたいでるからなのか。だから滅茶苦茶価値あるのを認めろって言われても微妙だが。由来を気にしたことなかった。

平行、半平行、等面積

3年前

ライデマイスターの定理

結び目の多項式を計算してみよう

壁に沿って滑る梯子の中点の軌跡

4年前

Aの二乗+Bの二乗+Cの二乗は198919901991 成り立つか

書記が数学やるだけ#24 Star⭐︎puzzle (+手元にある数学系の本についていくつか)

幾何

幾何

幾何問題

相似を使う幾何問題

幾何 平行使用相似 面積

数学夏祭りに参加7

これもピタゴラスの定理

4年前

われわれは、身勝手の罪の元、地獄に落ちる!わたしの性であるが、みなの性でもある!

¥100

さんおり

正5角形の作図いろいろ

4年前

平行使用相似 面積

中線定理

中線

西大事学園

補助線不使用 幾何文

私にとって数学は学問としてだけではなく「世の中の仕組み」を理解するための道具と成った。

日本数学オリンピック本選 図形問題への基礎的なアプローチ法

3日前