Op.1-1 動点と対角線
実は上の問題は、筆者が中学3年生の「2乗に比例する関数・相似と比」の範囲の定期テストで出題した問題です。意外とできる中学生が多くて感動しました。
以下、解説です。
$${x}$$秒後の$${△AQR}$$の面積を$${y}$$とします。
$${AQ=x}$$なので、$${△AQR}$$の面積を求めるには、$${AQ}$$を底辺としたときの高さが分かればよい、ということになります。
基本的には相似を使って解くと良いと思います。(相似の記号がちょっと変になってしまうのはなぜなんでしょう?)
点Rから、辺ABに下ろした垂線の足をSとします。
すると、$${△ARS ∽ △ACB}$$であり、$${△APQ ∽ △SPR}$$となります。
相似比の関係から、$${AS:SR=2:1}$$であり、$${SR:RP=1:1}$$ですから、結局のところ、点Sは辺APを2:1に分ける点だということが分かります。
$${AP=x}$$ですので、$${AS=\frac{2}{3}x}$$になりますから、$${△AQR}$$の高さも$${\frac{2}{3}x}$$となります。
よって、$${y=△AQR=\frac{1}{2}\times x \times \frac{2}{3}x =\frac{1}{3}x^2}$$であると分かります。
$${\frac{1}{3}x^2=\frac{2}{3}}$$を解いて、$${x>0}$$であることに留意すれば、問題の答えは$${\sqrt{2}}$$秒後だと求められます。
実は別解も考えました。
座標系に落とし込んで解く生徒もいるかな?と思って、あえてAを原点に見えるように配置しました。Aを原点、ABをx軸、ADをy軸だと考えると、Rの座標を求めることで、解くこともできます。
座標のxと混同してしまうので、$${a}$$秒後の面積を考えることにします。直線PQの式は$${y=-x+a}$$であり、直線ACの式は$${y=\frac{1}{2} x}$$であるので、これを連立すれば、Rの座標を出すことができ、後は同様にして何秒後か、求められます。
他の方法を見つけた人は教えて頂けると幸いです。