見出し画像

【驚異】数学の「無限」は面白い。アキレスと亀の矛盾、実無限と可能無限の違い、カントールの対角線論法:『無限論の教室』(野矢茂樹)

完全版はこちらからご覧いただけます


本書で初めて「無限」に種類があることを知ったし、「実無限」と「可能無限」の話には驚かされた

皆さんは「無限」というものについて考えたことがあるだろうか? 「『無限』って言ったら、あの『無限』のことだろ」と思った方、それでは、「『無限』には種類がある」と聞いて何を言っているのか理解できるだろうか? 私は本書を読んで初めてその事実を知った。まさか「無限」に複数の異なる捉え方が存在するとはまったく想像もしていなかったのだ。

本書には、「『カントールの対角線論法』を否定する」という主張が登場する。本書を読む以前から私は「カントールの対角線論法」の存在を知っており、数学の証明の中で一番好きなのだが、まさかそれを「認めない」なんて状況が存在し得るとは驚きでしかなかった。

本書で扱われる「無限」は、確かに「数学」の領域に属する話なのだが、語られている内容は「哲学」のように感じられるかもしれない。数学でも物理でも、分野によっては、まさに「哲学」としか受け取れないような主張がたくさん登場するものだ。本書には、恐らく理解不能に感じられる話も多々出てくるだろうが、そういう点も含めて楽しんでもらえたらいいと思う。

本書の構成をざっと説明しておこう。基本的に、物語のように展開される作品だ。大学生の「僕」が、タカムラさんという女の子と2人で、タジマという講師による無限論の講義を聞いているという設定になっている。一般向けの数学書として非常に読みやすい「数学ガール」シリーズのように、本書も会話を中心にして「無限」の話が展開されるので、かなりとっつきやすい作品だと言っていいだろう。

それでは以下、私が興味深いと感じた話について書いていきたいと思う。

「実無限」「可能無限」とは一体何か?

本書の内容でとにかく驚かされたのは、「無限論には2つの立場がある」という主張だ。それまでまったくそんな話を聞いたことがなかったので、メチャクチャ驚かされた。その2つというのが「実無限」と「可能無限」である。タジマ先生は基本的に「可能無限」の立場に立っており(恐らくそれが、著者自身の立場でもあるのだと思う)、本書は全体として「『実無限』は幻想に過ぎない」と主張する内容になっている。

では、「実無限」と「可能無限」は何がどう違うのだろうか。この説明のために、まずは横に長い1本の線を思い浮かべてほしい。そしてその線上のどこかに点を1つ打ち、「0」と記入する。0より右側がプラスの数、0より左側がマイナスの数という、いわゆる数直線である。

さて、この数直線上に適切に目盛りを刻むと、そこには「無数の数字が存在する」と捉えられるだろう。例えば、「-10~+10」まで目盛りを刻んだとする。この場合、「1」「7」のような整数はもちろん、「2.56」「1/3」といった有理数や、「√2」「π(パイ)」のような実数も、この数直線上のどこかに「存在する」と考えるのが自然であるように思う。というか、私はそんな風に考えていた。

このような捉え方のことを「実無限」と呼ぶ。「この数直線上には、ある範囲内に収まるべき数が『点』として『存在する』」と考えるのが、「実無限」の立場というわけだ。

しかし「可能無限」派はそのようには考えない。そのようには考えないということはつまり、「数直線上に数が『点』として『存在する』わけではない」ということだ。では、「可能無限」の立場ではどのように考えるのだろうか。

それを短く説明すると、「数直線をどこかで切断した場合に、数としての『点』を取り出すことが可能であり、その『可能性』が『無限』に『存在する』」となる。

意味が分かるだろうか? ざっくり説明してみよう

例えば、数直線を「3」のところで切断すると、「3という点(数)」を取り出すことができる。しかし「可能無限」派は、「その『3という点(数)』が数直線上に元から存在していた」とは考えない。「3」のところで切断すれば「3という点(数)」を取り出すことはできる。しかし最初から「3」という点(数)が数直線上に存在しているわけではない、というわけだ。

この違いを、トランプを例にして捉え直してみよう。52枚のトランプをシャッフルした後で、裏向きのままテーブルにダーッと綺麗に広げ、その中から1枚引くことを考える。引いたカードは「ハートの3」だとしよう。この場合、「実無限」的に考えれば、「マーク4種類、1~13の計52枚のカードが元から存在し、その中から『ハートの3』を選びだした」という説明になるだろう。しかし「可能無限」派の場合は、こんな捉え方になるんじゃないかと思う。「裏返しになったトランプは、マークも数字もまったく決まっていない。そして、トランプを1枚選んだ時に、初めてそのカードが『ハートの3』であることが確定した」と。

トランプを用いたこの説明は私が考えたものであり、恐らく「実無限」と「可能無限」の違いを適切に説明できてはいないだろう。しかし、意識したことはなかったものの「実無限」派だった私には、「可能無限」派の主張は、先のトランプの喩えと同じぐらいの不可思議さを感じさせられた。「そんな捉え方も存在するのか」と驚かされたのである。

しかし、「可能無限」派のように考えることにメリットも存在すると知り、受け取り方が変わった。例えば、有名な「アキレスと亀のパラドックス」も、「可能無限」の立場で考えればパラドックスでもなんでもなくなるのである。

「アキレスと亀のパラドックス」とは、足の速いアキレスと足の遅い亀がハンデ戦の徒競走を行うという話だ。亀がアキレスより前の位置からスタートし、アキレスが亀を追い抜けばアキレスの勝利となる。時間制限もゴールもなく、単に「アキレスが亀を追い抜けば終了」という条件なのだが、アキレスはいつまでたっても亀に追いつけないというのがこのパラドックスのポイントだ。なぜなら、アキレスが亀のスタート地点に辿り着いた時には、亀はその少し先を走っているし、アキレスがさらに亀がいた地点に辿り着いた時には、亀はやはりもう少し先に行っているからである。アキレスは必ず「亀が少し前にいた地点」を後から通過しなければならず、そのためアキレスは亀に永遠に追いつけない、ということになるわけだ。

もちろん、実際には亀を追い抜けないはずがないので、この考え方はどこかおかしいことになる。しかし、その矛盾を指摘するのはなかなか難しい。これが、有名なパラドックスとして知られる「アキレスと亀」である。

これ以降は、ブログ「ルシルナ」でご覧いただけます

ここから先は

4,085字

¥ 100

この記事が気に入ったらサポートをしてみませんか?