マガジンのカバー画像

マガジン6 数Ⅱ【三角関数、指数関数と対数関数、微分と積分

99
中学数学と高校数学の違いが明確になるのはここからです。これまで学んだ多くの知識を踏まえて話が展開するので理解するのは容易くありません。でも必要な知識を補いながら進めば、理解不足の…
これまでもそうですが、大学以降の数学を意識して書いています。特に有料部分はそれを意識して書いていま…
¥1,000
運営しているクリエイター

#老後の数学

30.11 積分の初歩(定積分と体積)

30.03 , 30.05 を踏まえた高校数学Ⅲの内容です。これで積分の初歩は終わりです。次回からは…

200
1

30.10 積分の初歩(偶関数・奇関数)

特殊な性質の紹介です。

200
1

30.09 積分の初歩(基本演習)

※ [5]の解答解説を一部修正(2024.10.20) 演習 [1]  曲線$${y=f(x)}$$は点$${(1,2)}$$を…

200

30.08 積分の初歩(定積分と面積2)

基本だけど間違いやすい問題を扱います。 例題として扱う問題 [1]  曲線$${y=x(x-1)(x-3)}$…

200

30.07 積分の初歩(1/6公式とその使い方)

俗に "$${\frac{\:1\:}{6}}$$公式" と呼ばれる積分公式を紹介します。前半は公式の使い方、後…

200
1

30.06 積分の初歩(定積分と面積)

前回の知識を踏まえて、定積分を利用して面積を求める方法を紹介します。定積分の計算ができる…

200
1

30.05 積分の初歩(積分記号について)

面積の話をする前に積分記号について話します。手元に見当たらないのですが、高校生のときブルーバックスの柴田敏男 著『微積分に強くなる』を読んで積分を理解しました。最終章にはイプシロンデルタが書かれています。 積分記号$${\int ▢dx}$$の$${\int}$$にも$${dx}$$にもそれなりの意味があります。この記号は1回目に出てきたライプニッツ(G.W.Leibniz)によるものです。微分の初歩では微分記号に$${f'}$$を用いましたが、$${\frac{dy}{d

30.04 積分の初歩(定積分の計算とその工夫)

定積分の計算はできるようになったでしょうか。できるようになったとしても計算はめんどうです…

200
1

30.03 積分の初歩(定積分とその計算)

3回目は「定積分」です。新しい記号はありません。1回目に話した、面積を求めるには原始関数…

200
5

30.02 積分の初歩(不定積分とその計算)

2回目は「不定積分」です。新しい記号が出てくるので、初学者には難しく感じられますが、三角…

200

30.01 積分の初歩(微積分の入口)

今回から積分の話をしますが、まずは少しだけ歴史的なことを話します。 1回目は「原始関数」…

200

29.20 微分の初歩(多項式と重根)

(無料公開)n次関数に関する発展的な話はこれが最後で、次回からは積分の話をします。 多項…

29.19 微分の初歩(積の微分公式)

n次関数に関する発展的な話の4/5回目です。(無料公開) 今回は覚えておくと便利な微分公式…

29.18 微分の初歩(補遺 n次関数について)

n次関数に関する発展的な話の3/5回目です。 今回はn次関数について言い残したことを話します。極値が求めにくい問題、関数$${y=x^n}$$のグラフ、高校数学Ⅱの範囲ではグラフが描きにくい問題について触れます。 問題形式で話を進めるので、解説を読む前に解いてみてください。少なくとも3分くらい考えると、解けなかったとしても理解が深まると思います。 問題1(極値を求めるのがたいへん?) 実数上で定義された関数$${y=x^4-4x^3+2x^2-2}$$の極値を求めよ。

¥200