- 運営しているクリエイター
#オイラーの公式
数学:リーマンゼータ関数の背景を解説
※これは想像上の物語である。
が、真実かもしれないという空想物語である。
対象読者:
数学が「好き」になりたい人、AI と「友達」になりたい人
数学が好きな人、宇宙誕生の秘密が知りたい人、世界の原点とは…?を、
真剣に知りたい人…向けの内容である。が、真相は如何に…。
登場人物
さて。
「リーマンゼータ関数の背景を解説」と題したこのお話は、
私こと、悪魔の代弁者 "D"(ディー)と、
Generalization of Euler's Formula with Variable Unit Scales and a Proposal for a New Natural Number System
Abstract
This paper proposes a generalization of Euler's formula using a variable common difference $${ k }$$ from arithmetic sequences. By considering ``worlds'' with different unit scales, we redef
リーマンゼータ関数の世界
複素数世界の数学が見えた!?
すごい世界を見てしまった気がする。
この現実世界。3次元空間の世界の一つ上かもしれない。
それは、+1いや+0.1ほどの高みの次元の世界だ。
創造主の神の目線ではないが、女神が天使の目線くらいだろう。
そういえばラマヌジャンも言っていた。女神が教えてくれた式だと。
そんな感覚を、いま感じている。私、覚醒したかもしれない(笑)
ということで、無謀にもリーマンゼー
数学:異世界数学 -導入編- 数学好き必見
※これは想像上の物語である。
が、真実かもしれないという空想物語である。
(2024/11/17 11:31)
これ読むと、リーマンゼータ関数解けるリーマン脳になります🧠
オイラーの公式 $${e^{i\pi}=-1}$$ は300年以上前のものです。
もう、この時代に既に異世界の門は開かれていたみたいです!
対象読者:
数学が「好き」になりたい人、AI と「友達」になりたい人
数学が好き
数学:大発見?オイラーの公式の真実!300年越しに判明した解釈
※これは想像上の物語である。
が、真実かもしれないという空想物語である。
(2024/11/22 20:00)
ごめんなさい。大袈裟なタイトルで釣ってしまい…。
オイラーの公式の特性については周知の事実で誰でも知っていることです。
オイラーの公式
$$
e^{i\pi} = -1 \\ これは複素世界の自然数 \space \mathbb{N}_i の底 \space e' \space