
生活に活きる心理学vol.36〜平均はあてにならない・少数の法則とは〜
前回、こちらのnoteで、見かけの平均値やパーセンテージは簡単に調整できることを説明しました。↓
それに続き、今回も平均の数字は当てにならないという話をします。
まずは、こちらの例をご覧ください。
あなたはコンサルタントで、今は大手コンビニ会社のコンサルを担当しています。
取締役の人から、1000店舗のうち万引き率が高い上位100店舗を教えてくれと頼まれました。
そしてデータを分析したところ、なんと万引き率が高かったのは主に農村にあるコンビニでした。
驚きの結果に、役員一同は静まりかえっています。
次いで、今度は万引き率の少ない下位100店舗を教えてくれと頼まれました。
あなたはデータの順番を入れ替え、資料を作成しました。
その結果、万引き率が低い店舗も主に農村部にあるコンビニでした。
これはどういうことでしょうか。
実は、これにはカラクリがあります。
というのは、万引き率は売り上げに対する被害額のパーセンテージです。
ですから、農村部の売り上げが比較的少ないコンビニは、万引き一回あたりの万引き率の上昇幅が大きいのです。
このように、調査結果はデータのまとめ方次第で突出して見えることがあるのです。
こうした振れ幅の大きいデータは、主に分母の少ないデータで起こるため
少数の法則と呼ばれています。
これを直感で理解することは容易ではありません。
ですが、前回のウィルロジャース現象や、今回の少数の法則が示すように、「平均値」の中には当てにならないものがあります。
まずはこういった見かけのデータが存在することを知り、普段から気をつけて行く必要があるでしょう。
ウィルロジャース現象に関するnoteはこちら↓
いいなと思ったら応援しよう!
