【算数・数学備忘録171】
不等式の証明①
数や量の大小関係を不等号を用いて表した式を不等式という。
ここは数Ⅰでやった。
a>bのとき不等式5a+b>a+5bが成立することを証明する。
左辺>右辺を証明するために左辺-右辺>0であることを示す。
すなわち5a+b-(a+5b)=5a+b-a-5b=4a-4b=(4(a-b)となる。
a>bのbを左辺に移行するとa-b>0になる。
a-bが正の数なので、それを4倍にした4(a-b)も正の数である。
よって4(a-b)>0
ゆえに左辺-右辺>0なので5a+b>a+5bが成立する。
いいなと思ったら応援しよう!
学習教材(数百円)に使います。