マガジンのカバー画像

正負の数の加減

48
代数和形式を優先しています。教科書通りの進め方ではありません。なぜその方がいいかの説明も。
運営しているクリエイター

#正負の数の加法と減法

減法を加法に直して計算

減法を加法に直して計算

 ここで気になったのは、G社とKy社の「加法を減法に直す(なおす)」という表現である。実は、各教科書とも、説明や問題提示において、この表現を使っている。

 減法はダメで、加法がよい、ということなのか。辞書で「直す」をひいてみよう。

 3の用法、特に㋐の用法、と解釈して、必ずしもダメな状態だからあらためなければならない、というわけでもないのかも知れない。G社・Ky社以外が「なおす」と平仮名に開い

もっとみる

受け取れる物の量も質も学習者によってかなり違う。計算問題が満点だったとしても。なぜその計算結果に辿り着くのか?その計算はどういう場面で使う(自分で文章問題作れるか?)
でもまずは最低ラインとして計算ができることは保障するためのショートカット。必要ならあとで必要に応じて足せば良い。

代数和を「正の数に符号+をつけない加法」と見るか、「加法記号+を省略して」符号をつけた項を並べた加法とみるか。後者の立場をとると、今の啓林館はとても教えにくい教科書になっていないか?

やっぱり、小学校までの式は一旦置いてもらって、代数和を標準形として項で区切ってキャンセルタイル算なり、綱引き算なりで答えを出す「小学までとは違う新しい式・計算」としてもらった方がいい。小学までの計算は「どれだけ(絶対値)」を計算するためのツールに格下げ。

たし算とひき算を同列に扱わなくていいのか? 減法を使うときは、意味と立式まで連れて行けば、答えの求め方は代数和に還元。必要なのは、減法の意味。
数学で使うのは、移項・連立方程式の文字消去と、関数の増加量(変化量)

減法を説明するための闘い(3)|孤高のトップランナーKr社

減法を説明するための闘い(3)|孤高のトップランナーKr社

 加減の説明の方法として、教科書は
パターン1)Kr社
パターン2)T社・S社・D社・Ky社・N社
パターン3)G社
の3つのパターンに大別できる。

 中学数学シェア1位、約4割の中学生がKr社の教科書を持っている。Kr社の正負の数の加減の定義は他社と全く異なり、加減とは「○よりも△大きい数/小さい数を求める計算」であるとして、数直線上の移動に置き換えて答を求める。この説明方式をパターン1とする

もっとみる
減法を説明するための闘い(2)|T社が常に「新しい」理由

減法を説明するための闘い(2)|T社が常に「新しい」理由

 加減の説明の方法として、教科書は
パターン1)Kr社
パターン2)T社・S社・D社・Ky社・N社
パターン3)G社
の3つのパターンに大別できる。
 パターン1では○より△大きい数/小さい数で加減を説明し、パターン3は2つの点(座標)のひき算を求答の根拠とする。

図が命のパターン2パターン2は矢線ベクトルのモデル

 そして現在多くの教科書が採用するパターン2は、数直線上でまっすぐな矢線を並べ

もっとみる
減法を説明するための闘い(1)|G社の試行錯誤

減法を説明するための闘い(1)|G社の試行錯誤

 加減の説明の方法として、教科書は
パターン1)Kr社
パターン2)T社・S社・D社・Ky社・N社
パターン3)G社
の3つのパターンに大別できる。
 パターン1では○より△大きい数/小さい数で加減を説明し、T社に代表されるパターン2では数直線上の矢線の操作で説明する。
 これに対してG社は独特の説明をする。

独自の説明をするG社 G社が正負の数の加減で他の教科書と異なるのは、1つは、減法の答の

もっとみる

数直線上で計算結果を見つけさせるのは、指を数えて計算することに似ている!この素朴な計算結果の「探索」を経てから、便利なアルゴリズム(減法は、符号を変えた加法)を見せてあげたほうが、ありがたみがわかっていいのでは?

 啓林館は負の数の加減計算を、これまでの正の数の扱いに変換して扱う準備をして、加減に入ることだ。

 負の数を使って表されたことばは、例えば、
「-3大きい」を「3小さい」のように、負の数を使わないで表すことができます。
 このことから、ある数よりも負の数だけ大きい数、小さい数についても考えることができます。
(p19)

負の数の加減を考えるということは、これまで通り正の数の計算の考え方が使えるように負の数の演算を正の数の演算(具体的には〇より△大きい/小さい数を求める計算)に変換すること。その下ごしらえさえ終われば、あとは数直線上の操作を符号決定&絶対値計算のルールに持ち込むことができる。

減法の意味(2) ひき算の意味を網羅する

減法の意味(2) ひき算の意味を網羅する

 ここでは便宜的に、小学校で習うたし算(非負数+非負数)・ひき算(非負数ー非負数=差が非負数)と、中学校で学習する負の数を含めた加法・減法を区別して表現する。

 算数教育学の本などを読むと「求残」「求差」「求補(求部分)」などのことばが並んでいる。ちょうど「和から」さんで、わかりやすい記事が出たので、これらの説明はそちらを。

 ところが小学1年で基数からスタートした加減が、中学に上がるまでに1

もっとみる
減法の意味(1) 教科書から

減法の意味(1) 教科書から

 正負の数の「減法」を考えるために、前提として、立式の意味としての減法と、絶対値計算のためのひき算を分けて考えなければいけない。

 ここでは便宜的に、小学校で習うたし算(非負数+非負数)・ひき算(非負数ー非負数=差が非負数)と、中学校で学習する負の数を含めた加法・減法を区別して表現する。

 なぜ立式の意味を考えるかというと、「その減法の式の答はこれだ!」ということを、減法の式の意味から説明する

もっとみる