見出し画像

【読書記録】東浩紀『存在論的、郵便的』を読む②

東浩紀『存在論的、郵便的 ジャック・デリダについて』の第一章「幽霊に憑かれた哲学」の「2」に書かれている、デリダ『「幾何学の起源」序説』における、フッサールの超越論的歴史への批判を整理してみました。この内容は、①でまとめた「散種」ともつながるとのことで、それらがどのようにつながるのかを丁寧に書いてみたつもりです。あと余談ですが、千葉雅也さんが言っていましたが、この郵便本はまるで「謎解き」みたいであるというのが、めちゃくちゃわかりました。では。

『「幾何学の起源」序説』における、フッサールの超越論的歴史への批判

デリダが初期に発表した『「幾何学の起源」序説』は、フッサールが晩年に書いた論文「幾何学の起源」に対して、解説として書いた序説のことである。フッサールはこの論文で、その名の通り「幾何学の起源」について語っている。しかしながら、数学の定理というのは非歴史的なものである。というのも数学の定理とは、いつだれがその定理が証明したのかに依存しない、非属人的なものだからである。実際、数学の授業において、定理は非歴史的な理性によってその場で証明される。しかしフッサールは、「いつ誰に発見されても良かった」という理念性そのものは、やはりいつか誰かによって発見されねばならないことを指摘する。例えば、三平方の定理は前6世紀のピタゴラスによって証明されたが、その時はじめて三平方の定理は、非歴史的な定理であると歴史的に発見される。フッサールは、このような「非歴史的なものが歴史的に産出される」事象に注目した。また、私たちが三平方の定理の非歴史性を確認する際は、ピタゴラスから積み上げられている文書を読み、そこに書かれている三平方の定理を再び証明する。そのときやはり、我々が生きている歴史において、私たちが三平方の定理の非歴史性=理念性を得たのは、まさにピタゴラスが発見した後であり、しかも後でしかあり得ないのである。

デリダは、このフッサールの「超越論的歴史」という観念、つまり「非歴史的なものが歴史的に産出される過程」の前提となる「歴史の唯一性」に目を向ける。デリダは、三平方の定理が歴史的に発見される必然性と、ピタゴラスによって発見される必然性は分けられるとする。つまり、誰が発見するかについては、議論を分けられるということである。しかし、フッサールはそれらを区別しない。現実の歴史においては、発見したのはピタゴラスであり、ピタゴラスに他ならないわけで、それらを分ける必要性がないのである。ここからわかることは、フッサールは現実の、唯一の歴史のみを前提に議論をしていることだ。つまり、今の私たちが生きている歴史ではピタゴラスが証明しており、そこから伝承されている文書によって、私たちは三平方の定理が非歴史的なものであることを再度証明することができている、それが現実であり、ただ唯一の歴史であるということだ。デリダは、フッサールにおける歴史の単数性を批判し、三平方の定理をピタゴラスが発見しなかった「かも知れない」世界を思考し、歴史を複数化する。

この議論をする際に、デリダはフッサールの「超越論的歴史」が前提にする「歴史の純粋な連鎖」にも目を向ける。私たちが幾何学の起源へと遡行し、タレスなりピタゴラスなりに宿った明証性を絶えず確認することができるのは、そこで遡行の糸が途切れていないからである。つまり幾何学の唯一性はその歴史の唯一性と、歴史の純粋性によって保証されるのである。しかし、この遡行の糸、つまり文書による伝達には、つねに「引用可能性=失敗可能性」が孕んでいる。ここにデリダのエクリチュールへの問題意識が重なる。エクリチュールは、常に発信者の意図の制御から外れていく可能性があるため、フッサールが前提とする歴史の純粋性は担保されないのである。

東はデリダのフッサール批判の整理に、クリプキの固有名論を補助線に用いる。クリプキは、固有名の定義に確定記述、つまりその固有名の諸性質の記述を用いると、ある矛盾が起きるという。その矛盾とは、可能世界を考える、つまり反実仮想をするときに生まれる。例えば「アリストテレス」という固有名を、アリストテレスの諸性質、プラトンの弟子、アレクサンダー大王を教えた人物などの記述で定義した時、「アリストテレスは、アレクサンダー大王を教えなかったかもしれない」と反実仮想した文章は、「アレクサンダー大王を教えた人物は、アレクサンダー大王を教えなかったかも知れない」となりえ、矛盾を孕んでしまう。言い換えれば、「固有名を確定記述に置き換えると可能世界で背理が生じる」のだ。そこで柄谷行人は、ある個体の諸性質を「特殊性」と呼び、固有名が指示する個体の個体性を「単独性」として区別する。このとき柄谷は「単独性の現実性は可能世界から遡行して見出される」と言う。確かに反実仮想せずに、単に現実世界だけを考えるならば「特殊性」と「単独性」は分ける必要もなく、アリストテレスはアレクサンダー大王を教えた人物としても良い。しかし可能世界を考えると、固有名における「特殊性」と「単独性」が切り離される。そのとき「単独性」自体のリアリティーが浮き上がってくるのだ。別の言い方をすれば、固有名の「単独性」を考えるには、可能世界を考える必要があるということである。

これを補助線に用いると、デリダの歴史の複数化と、①で議論した「散種」の思考が交差する。柄谷が整理した固有名における「単独性」と「特殊性」の対は、「散種」と「多義性」の違い(①)で考察した「同じもの」と「同一性」の対と同等である。「単独性」=個体の個体性は、さまざまなコンテクストに一貫している記号の「同じもの」性とつながり、特定のコンテクストによって与えられる記号の「同一性」は、固有名の「特殊性」と重なり合う。このとき、出発点を記号の「同じもの性」に置く「散種」の思考は、可能世界を踏まえる「単独性」の思考と呼応する。また、可能世界を考えることは、現実の唯一の歴史から離れることであり、フッサールの超越論的歴史への批判でもあった。ここから「散種」とは、以下のように整理することができるだろう。「散種」とは、超越論的歴史の純粋性と唯一性を絶えず、エクリチュールに宿る「失敗可能性」や、固有名の「単独性」によって断絶させ、複数化されることで、そこに条件法過去、つまり「三平方の定理」がピタゴラスにより発見されなかった世界の現実性を挿みこんでいく運動のことである。

※補足
「散種」の思考とは、記号を背後で規定する「コンテクスト」から始めるのではなく、記号それ自体からはじめて、それらがさまざまな「コンテクスト」を横断、引用されていく運動の中で事後的に複数の「同一性」が見出されるものである。このとき、記号は背後に「コンテクスト」つまり、よくいう過去を持たない存在になる。このような特殊な『過去』とも言えるものは、ここでいう「可能世界」つまり、条件法過去のことだったのではないか、と東は指摘する。つまり、デリダの「現前することのない『過去』」とは「〜かも知れなかった過去」のことなのではないだろうか、ということだ。


以上になります。次は第一章「幽霊に憑かれた哲学」の「3」における、「幽霊」と「反復可能性」について整理しようと思います。ここでついに章題の「幽霊」が現れますが、どのような意味で用いられているのでしょうか。楽しみです。それでは。

いいなと思ったら応援しよう!