【天才】数学の捉え方を一変させた「シンメトリー(対称性)」と、その発見から発展に至る歴史:『シンメトリーの地図帳』
完全版はこちらからご覧いただけます
数学における超重要概念「シンメトリー」とは何か
「シンメトリー」は、実は身近に存在する
この記事では、「シンメトリーとは何であり、その研究がどのように展開されていったか?」について書いていく。しかし「シンメトリー」そのものの説明の前に、「シンメトリー」が我々の日常に関係していることを示そう。例えば、こんな文章には興味を惹かれるのではないだろうか。
また、こんな風にも書かれている。
「シンメトリー」は「対称性」という意味であり、「対称」であればイメージしやすいだろう。半分に折っても同じ形なら「線対称」だし、回転しても同じ形なら「回転対称」だ。この記事で取り上げる「対称性」は、決して「モノの形」に限る話ではないが、モノの形とも関係する話だ、と考えると捉えやすいかもしれない。
自然界にも、「シンメトリー」は溢れている。
要するに、「ミツバチは、シンメトリーを見ることができるメガネを掛けている。そんなミツバチに見つけてもらうために、植物はシンメトリーの形に進化した。その形は、人間にとっても美しく見える」ということだ。「シンメトリーは甘いのだ」という表現は、すごくいいなぁと感じる。
さてこのシンメトリーは、科学研究においてもかなり重視される。有名な例は、アインシュタインだろう。本書の訳者があとがきでこんな風に書いている。
つまり、「自然はどうもシンメトリーに支配されているらしい。ということは、新しい仮説を考える時には、『自然界はシンメトリーを好む』という前提に立って考えよう」という発想が生まれ、それによって実際に大きな成果を挙げられるようになっていった、ということである。
我々がこの世界を正しく捉えるために、「シンメトリー」は欠かせない武器だということだ。
「シンメトリー」への理解は、「方程式の解の公式」から発展した
そんな「シンメトリー」は、科学ではなく数学の世界で発展した。その発端となったのは、自然界の深遠な性質と結びついているなどとは到底考えられないようなものだった。
それが、「方程式の解の公式」である。
皆さんも学生時代、「2次方程式の解の公式」を習っただろう。a,b,c,x,yと√(ルート)が入り混じったよく分からない式だ。かつて数学者は、このような「方程式の解の公式」を懸命に探していた。数学者の奮闘により、3次方程式、4次方程式の公式は発見されたのだが、5次方程式でつまずいた。優秀とされたどんな数学者も、5次方程式の解の公式を見つけることができなかったのだ。
この問題に、まったく別の光を当てたのがアーベルという天才数学者だ。彼はなんと、「5次方程式の解の公式は存在しない」と証明したのだ。
この証明は、現在では画期的なものと評価されているが、当時は違った。アーベルはノルウェー出身であり、当時ノルウェーは周辺諸国から孤立していた。学問の中心であるパリからも非常に遠く、アーベルは自らの成果を認めてもらおうと奮闘したものの、それには恐ろしく長い時間が掛かった。アーベルにとっては、不運としか言いようのない時間が続くことになる。
しかしようやくアーベルの功績は正しく評価されるに至った。本書にはこう書かれている。
数学史に燦然と輝く天才・ガロアの功績
アーベルは、新たな扉を開いたが、しかしまだまだ「シンメトリー」には遠い。
さてその後、アーベルの業績を発展させる形で、革命的な仕事を成し遂げたのが、天才数学者ガロアである。ガロアは、「20歳の時に決闘で命を落とした」というエピソードがあまりに有名だが、20歳という若さで亡くなったにも関わらず、その後の数学界を一変させるような業績を残した。
しかしアーベル同様、ガロアも様々な不運があり、生きている間にその業績が認められることはなかった。
彼の画期的な論文は、学位論文として発表されたのが、当時の教授がその真価を見抜けず、そればかりか「意味がない研究」と一蹴されてしまう。
ただし、この教授を責めることは酷かもしれない。何故ならガロアは、「それまで存在しなかった新たな分野をたった一人で作り上げた」からだ。存在しなかった分野だからこそ、「それまで誰も考えたことのない新たな概念を、既存の言葉だけで説明しなければならない」ということになる。たとえば江戸時代に、江戸時代に存在した言葉だけで「携帯電話」の構造を説明するのは不可能だろう。ガロアは、それと同じような状況に立たされていたというわけだ。評価できなかった教授が悪いのではなく、ガロアが天才過ぎたと言うべきだろう。
ガロアの業績が認められるようになったのは、友人シュヴァリエのお陰だ。ガロアは決闘の直前に自らの考えを書き記し、そのメモを彼に託したのだ。ガロアの死後、数学的素養を持っていたわけではないこのシュヴァリエが、友人の仕事を絶対に数学界に認めさせてやるんだと奮闘したお陰で、時間は掛かったがようやくガロアの研究の真価が認められることになった。
では、ガロアは一体何をしたのだろうか?
これ以降は、ブログ「ルシルナ」でご覧いただけます
ここから先は
¥ 100
Amazonギフトカード5,000円分が当たる
この記事が気に入ったらチップで応援してみませんか?