見出し画像

【入試問題解説#3】女子学院中学校(2018年/大問7)

こんにちは。
今回は、中学入試や大学入試の問題解説をおこなっていきたいと思います。

第3回の今回は、中学入試問題を取り上げます。

今回、扱う問題は女子学院中学校の2018年度の入試問題です。

問題

今回、取り上げる問題はこの問題です。

ぜひ、解いてみてください!
目標時間は8分です。

↓↓↓↓↓↓解答・解説↓↓↓↓↓↓

解答

(1) 105
(2) 180・210・475

解説

(1)

食塩水の濃度を考える際には、天秤図を用いるとわかりやすいです。

その際のポイントは、
 食塩水の量の比と濃度の比は逆比であるということです。

2.8%と6.4%の差は3.6%。
6.4%と11.2%の差は4.8%

すなわち、その差の比は3:4になります。

ここで、量と濃度の比は逆比であるので、以下のように考えられます。

すなわち、求める答えは、

 140 × 3/4 =105(g)

答え:105g

(2)

容器Aに水を□g入れる
 =食塩の量は変わらない。

それぞれに入っている食塩の量を求める。

<容器A>
 300 × 0.112 = 33.6(g)
<容器B>
 200 × 0.028 = 5.6(g)

『容器Aに水を□g加えてかき混ぜた後、そこから100gを取り出して容器Bに入れてかき混ぜると4.2%の食塩水ができました。』

この部分を、天秤図に表します。

量の比が2:1なので、濃度の比は1:2の逆比になります

よって、容器Aの濃度は
 4.2 + 2.8 =7.0(%)となります。

容器Aに入っている食塩の量は33.6gですので、それが7%に相当します。

より、
 33.6 ÷ 0.07 = 480(g)

より、容器Aに入っている食塩水の量は480gです。

求める答えは、
 480 - 300 =180(g)

答え①:180(g)

『次に容器Bに入っている食塩水の水を蒸発させて食塩水の重さを□gにした後、そこから95gを取り出して容器Aに入れてかき混ぜると、6.8%の食塩水□gができました。』

この段階の様子を天秤図に表します。

量の比が1:4ですので、濃度の比は4:1の逆比になります。

より、容器Bの濃度は6%であるとわかります。

『容器Aに水を□g加えてかき混ぜた後、そこから100gを取り出して容器Bに入れてかき混ぜると4.2%の食塩水ができました。』

この動作があったので、容器Bに入っている食塩水の量は300(g)で、食塩の量は、12.6gです。

「蒸発」ですので、食塩の量に変化はありません。

よって、12.6gが6%に相当します。

12.6 ÷ 0.06 = 210 (g)

より、蒸発後の食塩水容器Bの食塩水の量は210gであるとわかります。

答え②:210g

最後の答えは、食塩水の量の和です。

左側に95g、右側に380gですので、合計は475gになります。

答え③:475g

まとめ

いかがだったでしょうか。
今回は、女子学院中学校の問題を取り上げました。
女子学院中学校の問題は、難易度自体は高くないものの、スピードが求められる問題が多い印象です。
 
今後も取り上げてほしい問題があれば、コメントにてお伝えください。

最後に

 記事を見つけてくださりありがとうございました。
 よろしければ、フォロー・Likeもお願いします。
 コメントでご意見、感想もお聞かせください。


いいなと思ったら応援しよう!

コチャTV@フォロバ100
よろしければサポートお願いします!より、質の高いnoteをかけるよう、日々精進します!

この記事が参加している募集