【探究】一般項と和
Σ公式を一般項$${a_{n}}$$と$${S_{n}}$$で考察する。
➀ $${\displaystyle\sum_{k=1}^{n}k=\displaystyle\frac{1}{2}n(n+1)}$$について,
(ⅰ) 一般項$${a_{n}}$$から和$${S_{n}}$$を求める。
$${a_{n}=n=\displaystyle\frac{1}{2}n(n+1)-\displaystyle\frac{1}{2}(n-1)n}$$より
$${\displaystyle\sum_{k=1}^{n}a_{k}=\displaystyle\sum_{k=1}^{n}\begin{Bmatrix}\displaystyle\frac{1}{2}k(k+1)-\displaystyle\frac{1}{2}(k-1)k\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{2}\displaystyle\sum_{k=1}^{n}\begin{Bmatrix}k(k+1)-(k-1)k\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{2}\begin{Bmatrix}\displaystyle\sum_{k=1}^{n}k(k+1)-\displaystyle\sum_{k=1}^{n}(k-1)k\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{2}\lbrace(1\cdot2+2\cdot3+\cdots+(n-1)n+n(n+1))}$$
$${-(0\cdot1+1\cdot2+2\cdot3+\cdots+(n-1)n)\rbrace}$$
$${=\displaystyle\frac{1}{2}\begin{Bmatrix}n(n+1)-(0\cdot1)\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{2}n(n+1)=S_{n}}$$
(ⅱ) 和$${S_{n}}$$から一般項$${a_{n}}$$を求める。
$${S_{n}=\displaystyle\frac{1}{2}n(n+1)}$$より
$${a_{n}=S_{n}-S_{n-1}=\displaystyle\frac{1}{2}n(n+1)-\displaystyle\frac{1}{2}(n-1)n}$$
$${=\displaystyle\frac{1}{2}n\lbrace(n+1)-(n-1)\rbrace}$$
$${=n}$$
② $${\displaystyle\sum_{k=1}^{n}k(k+1)(k+2)=\displaystyle\frac{1}{4}n(n+1)(n+2)(n+3)}$$について,
(ⅰ) 一般項$${a_{n}}$$から和$${S_{n}}$$を求める。
$${a_{n}=n(n+1)(n+2)}$$
$${=\displaystyle\frac{1}{4}n(n+1)(n+2)(n+3)-\displaystyle\frac{1}{4}(n-1)n(n+1)(n+2)}$$より
$${\displaystyle\sum_{k=1}^{n}a_{k}=\displaystyle\sum_{k=1}^{n}\begin{Bmatrix}\displaystyle\frac{1}{4}k(k+1)(k+2)(k+3)-\displaystyle\frac{1}{4}(k-1)k(k+1)(k+2)\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{4}\displaystyle\sum_{k=1}^{n}\begin{Bmatrix}k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{4}\begin{Bmatrix}\displaystyle\sum_{k=1}^{n}k(k+1)(k+2)(k+3)-\displaystyle\sum_{k=1}^{n}(k-1)k(k+1)(k+2)\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{4}\lbrace(1\cdot2\cdot3\cdot4+\cdots+(n-1)n(n+1)(n+2)+n(n+1)(n+2)(n+3))}$$
$${-(0\cdot1\cdot2\cdot3+1\cdot2\cdot3\cdot4+\cdots+(n-1)n(n+1)(n+2))\rbrace}$$
$${=\displaystyle\frac{1}{4}\begin{Bmatrix}n(n+1)(n+2)(n+3)-(0\cdot1\cdot2\cdot3)\end{Bmatrix}}$$
$${=\displaystyle\frac{1}{4}n(n+1)(n+2)(n+3)=S_{n}}$$
(ⅱ) 和$${S_{n}}$$から一般項$${a_{n}}$$を求める。
$${S_{n}=\displaystyle\frac{1}{4}n(n+1)(n+2)(n+3)}$$より
$${a_{n}=S_{n}-S_{n-1}=\displaystyle\frac{1}{4}n(n+1)(n+2)(n+3)-\displaystyle\frac{1}{4}(n-1)n(n+1)(n+2)}$$
$${=\displaystyle\frac{1}{4}n(n+1)(n+2)\lbrace(n+3)-(n-1)\rbrace}$$
$${=n(n+1)(n+2)}$$