部分和で定義される数列の回答例と注意点

問題

$${a_1 = 2}$$、$${S_n = \displaystyle\sum_{n\in\N_1}^n a_n}$$、$${S_n\,S_{n+1}=9^n}$$、$${a_n =\;?}$$

回答例

調査

$${S_1 = a_1 = 2 }$$、$${S_{n+1} = \dfrac{9^n}{S_n}}$$
  $${S_1 = 2 \rule{0ex}{3ex} }$$
  $${\rule{0ex}{5ex}S_2 = \dfrac{9}{S_1} = \dfrac{9}{2}}$$
  $${\rule{0ex}{5ex}S_3 = \dfrac{9^2}{S_2} = 9^2 \times \dfrac{2}{9}= 2 \times 9 }$$
  $${\rule{0ex}{5ex}S_4 = \dfrac{9^3}{S_3} = \dfrac{9^3}{2 \times 9} = \dfrac{9^2}{2} }$$
  $${\rule{0ex}{5ex}S_5 = \dfrac{9^4}{S_4} = 9^4 \times \dfrac{2}{9^2}= 2 \times 9^2 }$$
  $${\rule{0ex}{5ex}S_6 = \dfrac{9^5}{S_5} = \dfrac{9^5}{2 \times 9^2} = \dfrac{9^3}{2} }$$

導出

$${ S_{n+2} = \dfrac{9^{n+1}}{S_{n+1}} = 9^{n+1} \times \dfrac{Sn}{9^n} = 9S_n}$$
$${\forall m \in \N_1}$$:
  $${ S_{2m} = \dfrac12 \times 9^m }$$
  $${ \rule{0ex}{4ex}S_{2m-1} = \dfrac{9^{2m-1}}{S_{2m}} = 2 \times \dfrac{9^{2m-1}}{9^m} = 2 \times 9^{m-1} }$$

$${\forall m \in \N_1}$$:
  $${ a_{2m} = S_{2m} - S_{2m-1} = \dfrac12 \times 9^m - 2 \times 9^{m-1} = \dfrac{5}{2} \times 9^{m-1} }$$
  $${\rule{0ex}{5ex}a_{2m+1} = S_{2m+1} - S_{2m} = 2 \times 9^m - \dfrac12 \times 9^m = \dfrac{3}{2} \times 9^m }$$

検算

$${\forall m \in \N_1}$$:
  $${ [S_{2m}] = \dfrac{9}{2}, \dfrac{9^2}{2}, \dfrac{9^3}{2},\cdots = S_2, S_4, S_6, \cdots }$$
  $${ [S_{2m-1}] = 2\times 9^0, 2\times 9^1, 2\times 9^2, \cdots = S_1, S_3, S_5, \cdots }$$

$${\forall m \in \N_1}$$:
  $${ [a_{2m}] = \left[ a_2, a_4, a_6, \cdots \right] = \left[ \dfrac52, \dfrac52 \times 9, \dfrac52 \times 9^{2}, \cdots \right] }$$
  $${\rule{0ex}{5ex}[a_{2m+1}] = \left[ a_3, a_5, \cdots \right] = \left[ \dfrac32 \times 9, \dfrac32 \times 9^{2}, \cdots \right] }$$

✓ $${ \rule{0ex}{5ex}S_1 = a_1 = 2 }$$
✓ $${ \rule{0ex}{5ex}S_2 = S_1 + a_2 = 2 + \dfrac52 = \dfrac92 }$$
✓ $${ \rule{0ex}{5ex}S_3 = S_2 + a_3 = \dfrac92 + \dfrac32 \times 9 = \dfrac{36}{2} = 2 \times 9 }$$

結論

$${ \def\if{\text{if\;}}  a_n = \begin{cases} 2 & \if n = 1 \\\rule{0ex}{4ex} \dfrac52 \times 9^{m-1} & \if \exists m\in\N_1: n = 2m \\\rule{0ex}{5ex} \dfrac32 \times 9^m & \if \exists m\in\N_1: n=2m+1 \end{cases} }$$

蛇足 (注意点)

無理に定義域外適応しても$${ a_1^* = a_{2m+1} |_{m=0} = \dfrac32 \times 9^0 = \dfrac32 \not= a_1 = 2  }$$になる。規則性では$${ \cdots + a_{-2}^* + a_{-1}^* + a_0^* + a_1^* }$$と続く$${  S_1^* }$$の値を全て$${ a_1 }$$に押し込めているため、$${ a_{2m+1} }$$の式は$${ a_1 }$$を表さない。

また、$${\rule{0ex}{5ex} S_0^* = S_{2m} |_{m=0} = \dfrac12 \times 9^0 = \dfrac12 \not= 0 }$$になることからも、$${ S_1 = S_0^* + a_1 }$$も成立せず、条件に含まれる$${ S_1 = a_1 }$$と矛盾する。一般に、部分和で定義される数列で、$${ S_0^* \not= 0 }$$になる場合は初項が例外的になる。

引用


いいなと思ったら応援しよう!