マガジンのカバー画像

ギリシャ数学

4
古代ギリシャ数学をご紹介します
運営しているクリエイター

#ギリシア数学

[閲覧注意] アポロニオス『円錐曲線論』第Ⅰ巻命題11,20

 本稿はアルキメデス『放物線の求積』における放物線の性質の補足説明のために用意したものです.これだけ読んでも,(多分)一部の方しか楽しめません.古代と現代の曲線の生成についての認識の違いを感じることができると思います. 序.  アルキメデスは,放物線の軸と径の長さの比例関係は,失われた『円錐曲線原論』で証明されているといいます.現代的な視点では(原点を頂点とする)放物線はy=ax²(もしくは y²=px)で定義されますので,軸(y)と径(x)の比例関係が証明を必要とすると

アルキメデスと放物線の面積

序.   「円の正方形化」という言葉をご存じの方はいるでしょうか? 古代ギリシャでは,円と等しい面積の正方形を作図する問題が研究されていました.そしてその問題は曲線や曲面で囲まれた図形の面積や体積に等しい直線図形を作図する問題に発展しました.現在,それらの取り組みは「求積問題」と呼ばれています.    本稿では,古代ギリシャでの求積における最初の大きな成果としての,アルキメデスによる放物線の求積を,世界でもっとも分かりやすく,そして正確にお伝えします! もう一度いいます「世