![見出し画像](https://assets.st-note.com/production/uploads/images/93802407/rectangle_large_type_2_c0a999b43dbf93b066788a32e217a0a6.png?width=1200)
【Read between lines】Peskin, Schroeder "An Introduction to Quantum Field Theory" p. 61 (Angular momentum of one particle state)
Key Words
Angular momentum
Spin
One particle state
Relevant section
This is most easily done using a trick: Since $${J_z}$$ must annihilate the vacuum, $${j_za_0^{s\dagger}\ket{0}=[j_z,a_0^{s\dagger}]\ket{0}}$$. The commutator is nonzero only for the terms $${J_z}$$ that have annihilation operators at $${\bf{p}=0}$$.
…
Taking the commutator with $${a_0^{s\dagger}}$$, the only nonzero term has the structure $${[a_{\bf{p}}^{r\dagger}a_{\bf{p}}^r, a_0^{s\dagger}]=(2π)^3\delta^{(3)}(\bf{p})a_0^{r\dagger}\delta^{rs}}$$; the other three terms in the commutator either vanish or annihilate the vacuum. Thus we find
$$
J_za_0^{s\dagger}\ket{0}=\frac{1}{2m}\sum_r\left(u^{s\dagger}(0)\frac{\Sigma^3}{2}u^r(0)\right)a_0^{r\dagger}\ket{0}=\sum_r\left(\xi^{s\dagger}\frac{\sigma^3}{2}\xi^r\right)a_0^{r\dagger}\ket{0}
$$
where we have used the explicit form (3.47) of $${u(0)}$$ to obtain the last expression.
Questions
Why $${J_z}$$ annihilates the vacuum
Typo
Solution
Jz annihilation of the vacuum
Because $${\ket{0}}$$ has no special direction.
Typo
$$
\begin{array}{l}[J_z, a_0^{s\dagger}]\ket{0}\\=\displaystyle\int d^3x\int\frac{d^3pd^3p'}{(2π)^6}\frac{1}{\sqrt{2E_{\bf{p}}2E_{\bf{p}'}}}e^{i\bf{p}\cdot\bf{x}}e^{-i\bf{p}'\cdot\bf{x}}\sum_{r,r'}\left[(a_{\bf{p}'}^{r'\dagger}u^{r'\dagger}(\bf{p}')+b_{\bf{p}'}^{r'}v^{r'\dagger}(\bf{p}'))\frac{\Sigma^3}{2}(a_{\bf{p}}^ru^r(\bf{p})+b_{\bf{p}}^{r\dagger}v^r(\bf{p})),a_0^{s\dagger}\right]\ket{0}\\=\displaystyle\int\frac{d^3pd^3p'}{(2π)^6}\frac{1}{\sqrt{2E_{\bf{p}}2E_{\bf{p}'}}}(2π)^3\delta^{(3)}(\bf{p}-\bf{p}')\sum_{r,r'}\left[(a_{\bf{p}'}^{r'\dagger}u^{r'\dagger}(\bf{p}')+b_{\bf{p}'}^{r'}v^{r'\dagger}(\bf{p}'))\frac{\Sigma^3}{2}(a_{\bf{p}}^ru^r(\bf{p})+b_{\bf{p}}^{r\dagger}v^r(\bf{p})),a_0^{s\dagger}\right]\ket{0}\\=\displaystyle\int\frac{d^3p}{(2π)^3}\frac{1}{2E_{\bf{p}}}\sum_{r,r'}\left([a_{\bf{p}}^{r'\dagger}a_{\bf{p}}^r,a_0^{s\dagger}]u^{r'\dagger}(p)\frac{\Sigma^3}{2}u^r(p)+[a_{\bf{p}}^{r'\dagger}b_{\bf{p}}^{r\dagger},a_0^{s\dagger}]u^{r'\dagger}(p)\frac{\Sigma^3}{2}v^r(p)+[b_{\bf{p}}^{r'}a_{\bf{p}}^r,a_0^{s\dagger}]v^{r'\dagger}(p)\frac{\Sigma^3}{2}u^r(p)+[b_{\bf{p}}^{r'}b_{\bf{p}}^{r\dagger},a_0^{s\dagger}]v^{r'\dagger}(p)\frac{\Sigma^3}{2}v^r(p)\right)\ket{0}\\=\displaystyle\int\frac{d^3p}{(2π)^3}\frac{1}{2E_{\bf{p}}}\sum_{r,r'}\left((a_{\bf{p}}^{r'\dagger}\{a_{\bf{p}}^r,a_0^{s\dagger}\}-\{a_{\bf{p}}^{r'\dagger},a_0^{s\dagger}\}a_{\bf{p}}^r)u^{r'\dagger}(p)\frac{\Sigma^3}{2}u^r(p)+\cdots\right)\ket{0}\\=\displaystyle\int\frac{d^3p}{(2π)^3}\frac{1}{2E_{\bf{p}}}\sum_{r,r'}\left(a_{\bf{p}}^{r'\dagger}(2π)^3\delta^{(3)}(\bf{p})\delta^{rs}u^{r'\dagger}(p)\frac{\Sigma^3}{2}u^r(p)+0\right)\ket{0}\\=\displaystyle\frac{1}{2m}\sum_{r'}a_{\bf{p}}^{r'\dagger}u^{r'\dagger}(p)\frac{\Sigma^3}{2}u^s(p)\ket{0}\\=\displaystyle\frac{1}{2m}\sum_r\sqrt{m}(\begin{matrix}\xi^{r'}&\xi^{r'}\end{matrix})\left(\begin{matrix}\sigma^3/2&0\\0&\sigma^3/2\end{matrix}\right)\sqrt{m}\left(\begin{matrix}\xi^r\\\xi^r\end{matrix}\right)a_0^{r\dagger}\ket{0}\\=\displaystyle\sum_r\xi^{r'\dagger}\frac{\sigma^3}{2}\xi^ra_0^{r\dagger}\ket{0}\end{array}
$$