三角形が成立しない条件の活用(北海道大)
今回は、北海道大の入試問題から。
三角形が成立しない条件の利用です。
(1)は(x-2)a+y-2=0の恒等式の成立条件から導きます。
(2,2)ですね。
(2)が表題の問題です。
直線を用いた三角形が成立しない条件を活用します。
(ⅰ)3直線が1点で交わる。
(ⅱ)2直線が平行。
を利用します。
三角形が成立する条件は
(ⅰ)3直線が1点で交わらない。
(ⅱ)どの2直線も平行でない。
とすることが出来ます。
(ⅰ)については、直線ℓ2も定点(2,2)を通り、かつ直線ℓが(2、2)を通らないので自然成立しています。
(ⅱ)については、
ℓとℓ1が平行でない条件が a≠1
ℓとℓ2が平行でない条件が b≠1
ℓ1とℓ2が平行でない条件が a≠b
となり、a≠1かつb≠1かつa≠bとなります。
三角形が成立しない条件は比較的出題が多くありますので、事前に準備できる内容なので、確認しておいてくださいね。