ðKLæ å ±éã®è§£èª¬
KLæ
å ±éã¯ãšã³ããããŒãšå¯æ¥ã«é¢é£ããŠããŸããããšã³ããããŒãã®ãã®ã§ã¯ãããŸãããããã§ããšã³ããããŒãšKLæ
å ±éã®éãã«ã€ããŠèª¬æããŸãã
ãšã³ããããŒ
ãšã³ããããŒã¯ããã確çååžå ã®äžç¢ºå®æ§ãä¹±éããéãææšã§ãç¹å®ã®ç¢ºçååžã®ãšã³ããããŒãé«ãã»ã©ããã®ååžããåŸãããæ å ±ãå€ãïŒäºæž¬ãå°é£ã§ããïŒããšãæå³ããŸãããšã³ããã㌠(H(P)) ã¯æ¬¡ã®ããã«å®çŸ©ãããŸãïŒ
ããã§ãX ã¯å šãŠã®å¯èœãªäºè±¡ã®éåã(P(x)) ã¯äºè±¡ (x) ã«ããã確çååž (P) ã®ç¢ºçã§ãã
KLæ å ±éãšã®é¢ä¿
KLæ å ±éïŒãŸãã¯KLãã€ããŒãžã§ã³ã¹ïŒã¯ã2ã€ã®ç¢ºçååž (P) ãš (Q) ã®éã®çžå¯Ÿãšã³ããããŒãšãåŒã°ããããååž (P) ãå¥ã®ååž (Q) ãšã©ã®çšåºŠç°ãªããã枬ã尺床ã§ããããã¯ãããååžãå¥ã®ååžã§è¿äŒŒãããšãã«å€±ãããæ å ±éãè¡šããŸãã
çµè«
ãšã³ããããŒã¯åäžã®ç¢ºçååžã®äžç¢ºå®æ§ã枬ããŸãã
KLæ å ±éã¯2ã€ã®ç¢ºçååžã®éã®çžå¯Ÿçãªäžç¢ºå®æ§ãããªãã¡äžæ¹ã®ååžãä»æ¹ã®ååžãšã©ãã ãç°ãªããã枬ããŸãã
ãããã£ãŠãKLæ å ±éã¯ãšã³ããããŒãšã¯ç°ãªãæŠå¿µã§ããã2ã€ã®ç¢ºçååžéã®ãè·é¢ããçžéã枬ãããã«äœ¿ãããŸãããçŽæ¥çãªè·é¢å°ºåºŠã§ã¯ãªãç¹ã«æ³šæãå¿ èŠã§ãïŒé察称æ§ãããããïŒã
ã¯ããKLæ å ±éã¯2ã€ã®ç¢ºçååžã®çžå¯Ÿçãªãšã³ããããŒãããªãã¡çžå¯Ÿãšã³ããããŒã枬ãããã«äœ¿ãããŸããKLæ å ±éã¯ããã確çååž (P) ãå¥ã®ç¢ºçååž (Q) ã«ã©ãã ããè¿ãããããŸã㯠(P) ã (Q) ã§ã©ãã ããè¯ããè¿äŒŒã§ããããå®éåããŸãããã®å°ºåºŠã¯ã(P) ãš (Q) ã®éã®æ å ±ã®æ倱éãè¡šãããã«äœ¿çšããã(P) ã (Q) ããã©ãã ãé¢ããŠãããã瀺ããŸãã
KLæ
å ±éã¯æ¬¡ã®ããã«å®çŸ©ãããŸãïŒ
ãã®åŒããã(P) ãš (Q) ãå®å šã«äžèŽããå ŽåïŒããªãã¡ãå šãŠã® (x) ã«å¯Ÿã㊠(P(x) = Q(x))ïŒãKLæ å ±éã¯0ã«ãªããŸããããã¯ã(P) ãš (Q) ã®éã«æ å ±ã®æ倱ããªãããšãæå³ããŸããäžæ¹ã§ã(P) ãš (Q) ãç°ãªãå ŽåãKLæ å ±éã¯æ£ã®å€ãåãã2ã€ã®ååžéã®çžå¯Ÿçãªãšã³ããããŒïŒæ å ±ã®æ倱ïŒã瀺ããŸãã
KLæ å ±éã¯é察称ã§ããããã(D_{KL}(P || Q)) ãš (D_{KL}(Q || P)) ã¯ç°ãªãå€ãæã¡ã亀æå¯èœã§ã¯ãããŸãããããã¯ãçžå¯Ÿãšã³ããããŒããè·é¢ãã®ããã«æ¯ãèãããå³å¯ãªæ°åŠçæå³ã§ã®è·é¢å°ºåºŠïŒè·é¢ã¡ããªãã¯ïŒã§ã¯ãªãããšãæå³ããŸããè·é¢å°ºåºŠã¯éåžžã察称æ§ïŒ(d(x, y) = d(y, x))ïŒãæã€å¿ èŠããããŸãããKLæ å ±éã«ã¯ãã®æ§è³ªããããŸããã
確çååžã®æ¯èŒã«é€ç®ãçŽæ¥äœ¿çšããªãçç±ã¯ãé€ç®ãååžã®ç¹æ§ãéããæããã®ã«é©ããæ段ã§ã¯ãªãããã§ããé€ç®ãçŽæ¥äœ¿ãã¢ãããŒãã«ã¯ããã€ãã®åé¡ããããŸãïŒ
ãŒãã«ããé€ç®ã®åé¡: 確çååžã®äžã«ã¯ãç¹å®ã®äºè±¡ã®ç¢ºçã0ã«ãªããã®ããããŸããäžæ¹ã®ååžã§ã¯ãã®äºè±¡ã®ç¢ºçã0ã§ãªãã®ã«å¯Ÿããããäžæ¹ã®ååžã§ã¯0ã§ããå Žåããã®äºè±¡ã«ãããŠé€ç®ãè¡ããšæ°åŠçã«å®çŸ©ãããªãæäœïŒãŒãé€ç®ïŒã«ãªããŸãã
解éã®é£ãã: 確çååžéã®éããè¡šãããã«åçŽãªé€ç®ã䜿ã£ãå Žåããã®çµæã®è§£éãçŽæçã§ã¯ãããŸãããé€ç®ã®çµæã倧ããå Žåãå°ããå Žåããããå ·äœçã«äœãæå³ããŠããã®ããç解ããã®ã¯é£ãããããããŸããã
ã¹ã±ãŒã«ã®åé¡: é€ç®ã䜿ããšãçµæã®ã¹ã±ãŒã«ãå ã®ç¢ºçååžã®ã¹ã±ãŒã«ãšå€§ããç°ãªãå¯èœæ§ããããŸããããã¯ãæ¯èŒã®çµæãæ±ãã«ããããå¯èœæ§ããããŸãã
KLæ å ±éãä»ã®çµ±èšç尺床ïŒäŸãã°Jensen-Shannonãã€ããŒãžã§ã³ã¹ïŒã¯ãããã®åé¡ã解決ããããã«èšèšãããŠããŸããç¹ã«KLæ å ±éã¯ã2ã€ã®ç¢ºçååžéã®çžå¯Ÿãšã³ããããŒã枬å®ããååžã®éããããæ確ã«ç解ã§ããããã«ããŸããKLæ å ±éã¯ãæ å ±ã®æ倱ããšã³ããããŒã®å€åãèæ ®ã«å ¥ããååžéã®éããæ°åŠçã«å³å¯ãã€è§£éããããæ¹æ³ã§æäŸããŸãã
ãããã£ãŠã確çååžã®æ¯èŒã«ã¯ãé€ç®ããããããã®å°ºåºŠã奜ãŸããã®ã§ãã
ãã€ãã¹ãèæ ®ããããã«äºä¹æ³ãªã©ã®èšç®æ¹æ³ããããŸããïŒklæ å ±éã¯ãã®ãããªå·¥å€«ãåãããæ¹æ³ã§ããïŒ
ã¯ãã確ãã«å·®ç°ã枬å®ããéã«ãã€ãã¹ã®å€ãèæ ®ããããã«äºä¹å·®ïŒå¹³æ¹åïŒãªã©ã®æ¹æ³ããããŸãããã®ææ³ã¯ãäŸãã°æå°äºä¹æ³ãå¹³åäºä¹èª€å·®ïŒMSEïŒãªã©ãããŒã¿ã®äºæž¬èª€å·®ã枬å®ããéã«ããçšããããŸããå·®ã®äºä¹ãåãããšã§ã誀差ã®æ£è² ãç¡èŠãã倧ããªèª€å·®ã«éã¿ã眮ãããšãã§ããŸãã
KLæ å ±éïŒKullback-Leibler divergenceïŒã¯ããã®ãããªã工倫ãåãããæ¹æ³ããšèšããäžã€ã®äŸã§ãããç®çãšããèŠç¹ãç°ãªããŸããKLæ å ±éã¯ã確çååžéã®å·®ç°ã枬å®ããããã«ç¹åãã尺床ã§ããã2ã€ã®ååžãã©ãã ãç°ãªããããšã³ããããŒã®èŠ³ç¹ããè©äŸ¡ããŸããå ·äœçã«ã¯ããã確çååžãå¥ã®ç¢ºçååžã§è¿äŒŒãããšãã«çºçããæ å ±æ倱ã枬å®ããŸããKLæ å ±éã¯ãæ å ±çè«ã«æ ¹ãããæŠå¿µã§ãããååžéã®çžå¯Ÿçãªæ å ±å 容ã®éããæããããã«èšèšãããŠããŸãã
P ãšQ ã¯æ¯èŒå¯Ÿè±¡ã®2ã€ã®ç¢ºçååžã§ãããã®åŒãããããããã«ãKLæ å ±éã¯ç¢ºçååžéã®å·®ç°ããã°ã¹ã±ãŒã«ã§è©äŸ¡ããæ¯èŒããŠãã2ã€ã®ååžãã©ã®çšåºŠã䌌ãŠããªãããã瀺ããŸãã
KLæ å ±éã®ç¹åŸŽã¯ãå·®ç°ãçŽæ¥çã«äºä¹å·®ã§æž¬å®ããã®ã§ã¯ãªããååžã®åœ¢ç¶ã確çã®éã¿ä»ãã«åºã¥ããŠçžå¯Ÿçãªå·®ç°ãè©äŸ¡ããç¹ã«ãããŸããããã«ãããç¹ã«ç¢ºçã¢ãã«ãæ å ±çè«ã®æèã§éåžžã«æçšãªå°ºåºŠãšãªã£ãŠããŸããäºä¹å·®ã䜿ã£ãæ¹æ³ãšã¯ç°ãªããKLæ å ±éã¯ååžéã®å·®ç°ããæ å ±ã®èŠ³ç¹ãããæããããšãç®æããŠããŸãã
ãé¡ãèŽããŸã