NFCI vs. CLI delta
データの準備
TERM <- "2003::2023-09"
(to.monthly(NFCI)[,4] %>% diff())[TERM]
diff(cli_usa)[TERM]
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM],diff(cli_usa)[TERM])
length(diff(cli_usa)[TERM])
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM][-249],diff(cli_usa)[TERM][-1])
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM][c(-248,-249)],diff(cli_usa)[TERM][c(-1,-2)])
当月同士の比較
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM],diff(cli_usa)[TERM])
Pearson's product-moment correlation
data: (to.monthly(NFCI)[, 4] %>% diff())[TERM] and diff(cli_usa)[TERM]
t = -4.2252, df = 247, p-value = 3.361e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3719342 -0.1398186
sample estimates:
cor
-0.2596222
NFCI 2カ月前と当月のCLI delta の比較
それぞれの配列の先頭と最後を外すことで相関の対象を操作する。
diff(cli_usa)[TERM] %>% length
# [1] 249
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM][c(-248,-249)],diff(cli_usa)[TERM][c(-1,-2)])
Pearson's product-moment correlation
data: (to.monthly(NFCI)[, 4] %>% diff())[TERM][c(-248, -249)] and diff(cli_usa)[TERM][c(-1, -2)]
t = -4.6021, df = 245, p-value = 6.715e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3930601 -0.1629995
sample estimates:
cor
-0.2820799
前月NFCIと当月のCLI delta の比較
cor.test((to.monthly(NFCI)[,4] %>% diff())[TERM][-249],diff(cli_usa)[TERM][-1])
Pearson's product-moment correlation
data: (to.monthly(NFCI)[, 4] %>% diff())[TERM][-249] and diff(cli_usa)[TERM][-1]
t = -9.2021, df = 246, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5932117 -0.4071349
sample estimates:
cor
-0.506038
結論
CLIのdeltaはひと月前のNFCI変化値と最もよく相関する
重回帰分析
summary(lm(diff(cli_usa)[TERM][-1] ~ (to.monthly(NFCI)[,4] %>% diff())[TERM][-249] + (to.monthly(NFCI)[,4])[TERM][-249] ))
Call:
lm(formula = diff(cli_usa)[TERM][-1] ~ (to.monthly(NFCI)[, 4] %>%
diff())[TERM][-249] + (to.monthly(NFCI)[, 4])[TERM][-249])
Residuals:
Min 1Q Median 3Q Max
-4.0240 -0.1077 -0.0117 0.0844 1.5999
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.04077 0.02824 -1.444 0.15013
(to.monthly(NFCI)[, 4] %>% diff())[TERM][-249] -1.38774 0.15683 -8.849 < 2e-16 ***
(to.monthly(NFCI)[, 4])[TERM][-249] -0.13426 0.04302 -3.121 0.00202 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3729 on 245 degrees of freedom
Multiple R-squared: 0.2845, Adjusted R-squared: 0.2787
F-statistic: 48.71 on 2 and 245 DF, p-value: < 2.2e-16