ココナッツ花序樹液(Neera)由来Levilactobacillus brevis(RAMULAB51)の無細胞上清は3T3-L1脂肪細胞におけるグルコース取り込みとPPAR-γを促進し、α-グルコシダーゼとα-アミラーゼを阻害する
メインコンテンツへスキップ
トップバーナビゲーション
Frontiers in Microbiology
Sections
Articles
Research Topics
Editorial board
ジャーナルについて
私たちについて
すべてのジャーナル
すべての記事
研究を投稿する
ダウンロード論文
補足データ
256で共有する
Total views
22
Downloads
View article impact
論文のaltmetricスコアは1
補足資料
Table 1.docx
ORIGINAL RESEARCH article
Front. Microbiol., 23 December 2024
Sec. Food Microbiology
Volume 15 - 2024|https://doi.org/10.3389/fmicb.2024 .1497023
ココナッツ花序樹液(Neera)由来Levilactobacillus brevis(RAMULAB51)の無細胞上清は3T3-L1脂肪細胞におけるグルコース取り込みとPPAR-γを促進し、α-グルコシダーゼとα-アミラーゼを阻害する
Chandana Kumari V B&#x;Chandana Kumari V B1†Ramithラム
&#x;ラミス・ラム1*†Prithvi S. ShirahattiPrithvi S. Shirahatti2Perwez AlamPerwez Alam3Ling Shing WongLing Shing Wong4
1Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
2St. Joseph's College for Women, Rammanahalli, Karnataka, India
3Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
4Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
はじめに: 乳酸菌は、そのプロバイオティクスの利点と腸の健康増進のために珍重されている。本研究では、Neeraから分離された5つのLABを評価し、RAMULAB51(Levilactobacillus brevis、GenBank ON171686.1)は、その高い疎水性、自己凝集性、抗菌活性、酵素阻害作用が際立っていた。本研究では、RAMULAB51のプロバイオティクスと糖尿病管理における可能性を、消化酵素阻害、グルコース取り込み、脂肪細胞機能への影響に焦点を当てて評価した。
方法 分離株は、グラム染色、カタラーゼ反応、37℃での増殖、フェノール、pH、胃腸条件に対する耐性によって特徴づけられた。16S rRNA配列決定による分子同定。疎水性、自己凝集性、HT-29細胞株接着性、抗菌活性、抗生物質感受性などの評価。酵素阻害は、無細胞上清、細胞抽出液、無傷細胞を用いて、α-グルコシダーゼとα-アミラーゼについて測定した。脂肪形成は、3T3-L1細胞のOil-Red O染色、遺伝子発現解析(PPAR-γ、C/EBPα、アディポネクチン、Glut-4、FAS)、グルコース取り込みアッセイにより評価した。
結果 すべての分離株は、pH(≦9.15 CFU/ml)、フェノール(≦9.90 CFU/ml)、疎水性(≦78.14%)、自己凝集(≦92.23%)に対して良好な耐性を示した。RAMULAB51は最も高い耐性、疎水性、自己凝集性を示した。また、Micrococcus luteusおよびBacillus subtilisと強く共凝集し、Micrococcus luteusに対して24 mmの阻害域を示すなど、有意な抗菌活性を示した。すべての分離株は、アンピシリン、アジスロマイシン、ストレプトマイシン、テトラサイクリンに感受性であったが、メチシリンとバンコマイシンには耐性であった。RAMULAB51は、α-グルコシダーゼ(68.45%CFS、60.18%CE、42.15%IC)およびα-アミラーゼ(80.74%CFS、61.23%CE、35.12%IC)という最高の酵素阻害作用を示した。これらの消化酵素を阻害することにより、RAMULAB51は炭水化物のグルコースへの変換を減少させ、血糖値を低下させる。グルコース取り込みの促進(1000μg/mL)、PPAR-γ、C/EBPα、アディポネクチン、Glut-4のアップレギュレーション、FASのダウンレギュレーションによって証明されるように、この循環グルコースの減少は、脂肪細胞の機能に影響を与える。
結論 本研究は、RAMULAB51の糖および脂質代謝改善の可能性を明らかにした。その治療効果を十分に検討するためには、さらにin vivoでの研究が必要である。これらの知見は、RAMULAB51の重要なプロバイオティクスの可能性と糖尿病管理への有望性を裏付けるものであり、さらなる臨床研究が必要である。
1 はじめに
一般にニーラとして知られるココナッツ樹液は、ココナッツの木(Cocos nucifera L.)の開いていない花芽から採取される天然の甘い液体である(Jose et al.) 南インドでは「天国の木」と称されるココナッツの木は、その数多くの用途で有名であり、Neeraはその伝統的意義と栄養的意義の両方から、特に評価される製品として浮上している(Misra, 2016)。この樹液は新鮮なまま、あるいはパームシュガー、ジャガリー、発酵飲料(トディ)、ビネガーなど様々な付加価値製品に加工されて楽しまれている(Asha et al.) Neeraは伝統医療において確立された役割を果たし、その栄養価の高さが認められているにもかかわらず、プロバイオティクスの供給源としての可能性は比較的未解明である。
Neeraの伝統的な利用法には様々な健康効果が含まれ、気管支喘息、貧血、結核、痔などの症状に対処する(Srinivasuら、2021年)。この爽やかな樹液は、ビタミン類(B群など)、ミネラル類(カリウムやマグネシウムなど)、抗酸化物質、生理活性化合物を豊富に含んでおり、乳製品や典型的な発酵食品のようなプロバイオティクスの他の供給源ではすべて一緒に検出されることはあまりない(Misra, 2016)。100mLあたりのNeeraの栄養組成は、総固形分(15,200~19,700mg)、pH(4.0~4.6)、比重(1.059~1. 076)、全糖(14,400mg)、原還元糖(5,580mg)、全還元糖(9,850mg)、全灰分(110~410mg)、鉄(15mg)、リン(7,590mg)、クエン酸(500mg)、アスコルビン酸(16~30mg)、タンパク質(230~320mg)、アルコールは検出されなかった(Misra, 2016)。しかし、これまであまり注目されてこなかったプロバイオティクス源としてのニーラの可能性は、新たな可能性を期待させるものである(Somashekaraiah et al.) プロバイオティクスは、十分な量を摂取すると健康上のメリットをもたらす生きた微生物と定義される。腸の健康を促進し、免疫系の調節をサポートするために不可欠である(Kimら、2021年)。Neeraの天然微生物含有量を考慮すると、腸内細菌叢と健康全般にプラスの影響を与えるプロバイオティクス菌株を保有している可能性がある(Chinnammaら、2019年)。
代謝障害、特に糖尿病の管理におけるプロバイオティクスの重要性は、ますます認識されるようになっている。2型糖尿病(T2DM)は、インスリン抵抗性とグルコース代謝の障害を特徴とする世界的な健康問題である(Wondmkun, 2020)。プロバイオティクスは、腸の健康を増進し、免疫機能を調整し、代謝プロセスに影響を与える能力があるため、糖尿病管理の補完療法となる可能性が注目されている(Han and Lin, 2014)。プロバイオティクスは、インスリン感受性を高め、炎症を抑制し、血糖コントロールを改善することが示されており、糖尿病やその関連疾患の管理に有用である。ニーラの自然な微生物の多様性は、特殊な微生物群集の成長をサポートするユニークな環境を提供している。この環境は乳酸桿菌属に影響を与え、ヒト腸内の酸性および胆汁性条件に対する抵抗性を高めるなどの適応を発達させ、プロバイオティクスの効果を高める可能性がある(Brunkwall and Orho-Melander、2017;Tomusiak-Plebanekら、2018;Yangら、2020)。
プロバイオティクスが有益な効果を発揮するメカニズムのひとつに、酵素活性とグルコース代謝の調節がある。α-グルコシダーゼやα-アミラーゼなどの主要酵素は、炭水化物消化の中心的存在である(Shai et al.) 小腸に存在するα-グルコシダーゼは複合糖質をグルコースに分解し、α-アミラーゼは口や胃で糖質の消化を開始する(Panwarら、2014)。これらの酵素を阻害することで、グルコースの吸収を遅らせ、食後の血糖値を管理することができる。また、ニーラに含まれる抗酸化物質は、糖尿病の進行に関係する酸化ストレスの軽減を助けるかもしれない。この組み合わせは、ニーラから分離された乳酸菌株の健康効果を高める可能性がある。したがって、酵素阻害作用を持つプロバイオティクスは、グルコースの吸収を穏やかにし、血糖値の上昇を抑えることで、糖尿病管理において重要な役割を果たす可能性がある(Huligereら、2023年)。
しかし、酵素阻害による高血糖の管理は、戦略の一部に過ぎない。プロバイオティクスが脂肪細胞の分化にどのような影響を及ぼすかを理解することも、包括的な糖尿病管理には不可欠である。ペルオキシソーム増殖因子活性化受容体γ(PPAR-γ)は、脂肪細胞の分化と機能に関与する重要な転写因子である。PPAR-γは、脂肪形成、糖代謝、インスリン感受性に関連する遺伝子を制御している(Chandraら、2008年)。PPAR-γの活性化は、前脂肪細胞から成熟脂肪細胞への分化を促進し、脂肪酸の蓄積を促進する(Kimら、2020年)。また、インスリン感受性を改善し、グルコースホメオスタシスを維持する役割も担っている(Shenら、2014年)。天然化合物やプロバイオティクスがPPAR-γ活性にどのような影響を与えるかを解析することで、糖尿病などの代謝異常の管理に新たな戦略を提供できる可能性がある(Kim et al.) PPAR-γ活性を調節することで、脂肪代謝、グルコース取り込み、インスリン感受性に影響を与え、治療効果をもたらす可能性がある。
脂肪細胞の分化と機能を研究するための貴重なモデルとして、一般的に研究で用いられている3T3-L1脂肪細胞がある。これらの細胞は成熟脂肪細胞への分化を誘導することができ、グルコース代謝や脂肪形成に対する様々な化合物の影響などのプロセスを研究するのに理想的である(Rizzatti et al.) 3T3-L1脂肪細胞におけるグルコース取り込みを評価することは、Neeraのプロバイオティクス成分がグルコース代謝に及ぼす影響を理解する上で極めて重要である。脂肪細胞によるグルコース取り込みの促進は、インスリン感受性の改善と血糖コントロールの改善を示す重要な指標である(Yagiら、2020年)。Neeraに含まれるプロバイオティクスがグルコース取り込みにどのような影響を及ぼすかを評価することで、糖尿病管理に対するNeeraの潜在的な利点について洞察することができる。
プロバイオティクスの可能性を探るNeeraの研究は、従来の用途を超えてその役割を拡大し、代謝の健康への影響を探るまたとない機会となる。本研究は、3T3-L1脂肪細胞におけるα-グルコシダーゼおよびα-アミラーゼ阻害、PPAR-γ活性化、グルコース取り込みに対するNeeraの効果を調べることにより、糖尿病管理に対するNeeraの潜在的な有益性を包括的に理解することを目的としている。この研究結果は、糖尿病を管理し、代謝の健康を改善するための新規の自然なアプローチに道を開く可能性がある。さらに、この研究は、伝統的な飲料としてだけでなく、大きな健康効果を持つ機能性食品として、ニーラを現代の食生活に取り入れることの広範な意義を強調するかもしれない。Neeraに対する認識と消費が高まれば、糖尿病と関連する代謝異常との闘いにおける貴重な要素として、その認知度が高まる可能性がある。
2 方法論
2.1 実験計画
この研究の実験計画には、ココス・ヌシフェラ(Cocos nucifera)から採取し、無菌状態で4℃に保 存したニーラ・サンプルから乳酸菌(LAB)を分離し、その特徴を明らかにすることが含まれる。LABは希釈したサンプルをMRS寒天培地にプレーティングすることで単離し、グラム染色とカタラーゼ活性試験を用いて生化学的特徴を明らかにした。分子的同定は、16S rRNA遺伝子のPCR増幅を用いて行った。プロバイオティクスの質を測定するために、胆汁酸塩と模擬胃腸耐性が使用され、細胞表面の疎水性と凝集実験による接着能力も測定された。抗菌活性は寒天ウェル拡散法で評価し、抗生物質感受性はディスク拡散法で試験した。さらに、α-グルコシダーゼとα-アミラーゼの酵素阻害実験を行い、3T3-L1前駆脂肪細胞を培養して前駆脂肪細胞に対するLABの影響を調べ、細胞の生存率と分化に対するLABの影響を評価した。統計解析は、一元配置分散分析(one-way ANOVA)、ダンカンの多範囲検定(Duncan's multiple range test)を用い、有意性はp < 0.05とした。
2.2 LAB菌株の生化学的アッセイおよび培養条件
LAB菌株は、Cocos nucifera(ココナッツの木)から得られた天然のNeeraサンプルから、方法(Somashekaraiah et al.) 本研究では、Neeraを3月の早春の午前4時30分に採取し、最も新鮮な状態を維持し、日光暴露による発酵からの微生物および生化学的変化を最小限に抑え、正確なLAB株の分離と特性決定に不可欠な本来の微生物プロフィールと栄養組成を保持した。さらに、Neeraは、管理された条件を確保し、微生物および生化学的特性のばらつきを最小限に抑えるために、インドのカルナータカ州マンディヤにある1本のココナッツの木から採取された(Jose et al.) サンプルは無菌条件下で採取し、低温(4℃)で輸送して、その後の分析のための保存性を確保した。連続希釈後、サンプルをMRS(de Man, Rogosa, and Sharpe寒天培地、HiMedia, India)寒天プレートにプレーティングし、37℃、5%CO2インキュベーターで24時間培養した。様々な形態を示すコロニーを選択し、グラム染色(HiMedia, India)、カタラーゼ活性(Sigma-Aldrich, India)、細胞形態評価(Cowan, 1948)を含む形態学的および生化学的アッセイ(pH, 2-7.4; 温度, 4°C-50°C; 塩, 2-10%, フェノール, 0.4%; 12炭水化物)に供した。
2.3 分子同定
フェノール-クロロホルム-イソアミルアルコール(PCI)法で単離したゲノムDNAを、プライマー27Fと1492Rを用いてPCR増幅した(Kumari V.B. et al., 2024)。プロトコールは、95℃で5分間の初期変性、95℃で30秒間(変性)、55℃で30秒間(アニーリング)、72℃で1分間(伸長)を32サイクル行い、変性、アニーリング、伸長のステップを32サイクル行った。PCR産物はエチジウムブロマイドで染色した0.8%アガロースゲルで可視化した。1,500bp以上の16S rRNA遺伝子PCR産物の塩基配列は、NCBIのBLASTプログラムを用いて解析し、GenBankに提出した時点でアクセッション番号を得た(Kumari et al., 2023)。系統解析はMEGA 11ソフトウェアを用いて行い、塩基置換にはTamura-Neiモデルを用いた最尤法を用い、樹の構築には1,000ブートストラップ複製を用いた。初期樹は、1,570の位置からなる6塩基配列を部位間で均一な割合で解析し、対距離に基づいてBioNJ法を用いて作成した。アウトグループには、16S rRNA遺伝子の部分配列であるMT882202.1 Lactiplantibacillus plantarum DFRN2株を用い、系統樹の根付きを促進し、分類群間の進化的関係を明らかにした(Martiz et al.、2023)。
2.4 プロバイオティクスの特性
Zhongら(2021)が記述しているように、牛胆汁塩(0.3および1%; pH 2; HiMedia, Mumbai)を添加したMRSブロスを用いて、酸性胆汁耐性と模擬胃腸液耐性を試験した。模擬胃腸液耐性は、3g/L ペプシン(pH 3、2,500 U/mg)および1g/L トリプシン(pH 8、2,000 U/g)を添加したMRSブロス(HiMedia社、ムンバイ)を用いて評価した。酸性胆汁酸塩中での分離株の生存率を評価するため、菌株をMRS寒天培地にプレーティングし、37℃で24時間培養した。0.3%および1%の酸性胆汁酸塩に0、2、4時間暴露した後の生存細胞数を記録した(Douillard et al.) 細胞表面の疎水性、自己凝集、共凝集アッセイをMirtičら(2018)およびLipanら(2020)に実施し、接着能力を評価し、結果は百分率で表した。in vitro接着(Fonsecaら、2021年)については、クリスタルバイオレット染色とその後の顕微鏡観察を用いて、分離株をHT-29細胞で試験した。生存率が80%以上の菌株を選択し、さらなる解析を行った(Kumari et al.) 抗菌活性については、寒天ウェル拡散法(Sreepathi et al. ここで、一晩培養したLAB単離株100μLを、補足表1に示すように、37℃で24時間病原菌を接種したLB(Luria-Bertani)寒天プレートのウェルに入れ、ゾーン径をミリメートル単位で測定した(Sreepathi et al.) Dhanani and Bagchi (2013)は、MRS培地でディスク拡散法を用いて抗生物質感受性を評価し、37℃で一晩培養した後に阻害ゾーンを測定した。(溶血活性の測定には、血液寒天培地(5%;ヒツジ血)上でニーラ分離株を培養し、コロニー周辺に形成されるゾーンを観察して溶血タイプを分類する方法(Kumari V. B. et al.)
2.5 α-グルコシダーゼおよびα-アミラーゼの酵素阻害
α-グルコシダーゼ阻害活性は、100μLの無細胞(IC)、無細胞抽出物(CE)、無細胞上清(CFS)を0. 7 mL のリン酸カリウム緩衝液、0.1 mL のα-グルコシダーゼ、0.1 mL の p-ニトロフェニル-D-グルコピラノシドを添加した後、インキュベーションし、405 nm での OD(光学密度)を測定した(Huligere et al、 2024). α-アミラーゼ阻害については、IC、CE、CFSの0.5 mLをα-アミラーゼおよびデンプンとインキュベートし、3,5-ジニトロサリチル酸で停止した後、加熱、希釈し、吸光度を540 nmで記録した(Thermo Multiskan FC Microplate Reader)(Kumari・V・Bら、2022)。
2.6 細胞培養、細胞生存率、分化、Oil-Red O染色、定量的リアルタイムPCR
3T3-L1前駆脂肪細胞(継代番号12)をNational Centre for Cell Science (NCCS, Mumbai, India)から入手し、10%ウシ胎児血清(FBS; GIBCO, CA, USA)と抗生物質を添加したDulbecco's Modified Eagle's Medium (DMEM; GIBCO, CA, USA)で培養した。細胞は37℃、5% CO2環境で維持した。実験では、3T3-L1細胞を96ウェルプレートに1ウェルあたり15,000個播種し、インキュベートした(24時間;37℃、5%CO2)。その後、細胞を濃度の異なる抽出物で処理し、さらに72時間培養した(Leeら、2015)。処理後、20μLのMTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)ストック溶液(5 mg/mL)を各ウェルに加え、プレートを4時間培養した。培養後、MTT溶液を除去し、100μLのDMSOを各ウェルに加えた(Park et al.) IC50は、AAT Bioquestのオンライン計算ツールを用いて測定した(Calculator|AAT Bioquest IC50、2023)。プレートを暗所で15分間静置し、穏やかに振とうしてホルマザン結晶を可溶化した。その後、吸光度をマイクロプレートリーダーを用いて540 nmで測定した。脂肪細胞の分化誘導には、MDI(デキサメタゾン、3-イソブチル-1-メチルキサンチン、インスリン)混合液(Sigma-Aldrich、インド)を2日間、次いでインスリン専用培地、DMEMを用いた(Parkら、2011)。
5日目、8日目、12日目に、細胞をPBSで3回洗浄し、その後10%ホルマリンで室温で1時間固定した。その後、細胞を脱イオン水で洗浄し、60%イソプロパノールで10分間処理した後、Oil-Red Oで室温で15分間染色した。染色を評価するため、細胞を60%イソプロパノールで2回、それぞれ5分間、穏やかに攪拌しながら洗浄した。最後に、100%イソプロパノールでOil-Red O色素を除去し、492 nmで吸光度を測定した(KiBeom and GunSu, 2015)。同日、RiboEx試薬(GeneAll、Cat.No.302-001)を用いて全RNAを単離し、次いでPrimer Script RT Reagent kit(タカラ、Cat.No.RR037A)を用いて得られた0.001 mgのRNAからcDNAを合成した。リアルタイムPCRは、Rotor-Gene QシステムとQuantiFast SYBR Green PCR kit(QIAGEN, Cat. 番号204054;95℃で5分間の初期活性化、次いで95℃で10秒間、60℃で30秒間を40サイクル)、デルタデルタCt法(36)を用いてβ-アクチンに対する相対mRNAレベルを正規化した(Kimら、2020)。プライマー配列の詳細は表1に示す。
表1
www.frontiersin.org
表1. 定量的リアルタイムPCRのための遺伝子とそのアクセッション番号。
2.7 レヴィラクトバチルス・ブレビス(Levilactobacillus brevis)RAMULAB51のCFSを用いたグルコース消費アッセイ
3T3-L1脂肪細胞を6ウェルプレート(例.血清飢餓後、細胞はPBS(pH7. 4、HiMedia Laboratories)で3回洗浄し、DMEM単独、もしくは100nMのインスリン(Sigma-Aldrich India)を添加したDMEM、または250μg/mL、500μg/mL、1,000μg/mLの濃度のレヴィラクトバチルス・ブレビス(Levilactobacillus brevis)RAMULAB51由来のCFSを添加したDMEM中で30分間インキュベートし、グルコースの取り込みを評価した。さらに、一部の細胞はインスリンとCFSの組み合わせでインキュベートした。このインキュベーションの後、0.0005M 2-deoxy-D-[2,6-3H]グルコース(1.5μCi/well;放射性同位体用、Sigma-Aldrich India)を導入し、細胞をさらに15分間インキュベートした。その後、グルコーストランスポーターを阻害するため、0.3 mM フロレチン(Sigma-Aldrich India)を含むPBSで4回洗浄した。洗浄後、細胞を1mLの1N NaOH(HiMedia Laboratories)で溶解し、グルコース取り込みを測定するためにシンチレーションカウンティングを行った。さらに、3T3-L1脂肪細胞をDMEMで16時間無血清化した後、CFS(250、500、1,000μg/mL)またはCFSとインスリンの併用で15、30、240分間、またはインスリン(100nM)単独で30分間処理し、その後2-デオキシグルコース取り込みを測定した(Shenら、2014;Etesamiら、2020)。
2.8 統計分析
すべての実験は3連で行い、結果は平均±標準偏差(M ± SD)で報告した。分離株を比較するために、一元配置分散分析(ANOVA)を用い、続いてダンカンの多重範囲検定(Duncans's MRT)を行い、SPSS Software(Version 21.0, Chicago, IL, USA)で分析した。p値が0.05以下を統計的に有意とみなした。グラフはGraphPad Prism version 8.0 (GraphPad Software Inc., San Diego, CA, USA)を用いて作成した。
3 結果と考察
3.1 LAB株の生化学的アッセイ
MRSプレート上で、約30のコロニーが得られた。Among these, five isolates were identified through Gram-staining as Gram-positive and catalase-negative, characteristics consistent with LAB. Gram-staining is crucial for identifying LAB by revealing their Gram-positive nature and catalase-negative traits, distinguishing them from other bacteria (Guo et al., 2009). Confirmatory cell morphology assessments, showing typical rod-shaped LAB cells, reinforce their classification within this bacterial group (de Melo Pereira et al., 2018). Understanding LAB morphology is essential for their differentiation and utilization in food fermentation and probiotics (Huligere et al., 2023).
The biochemical assays conducted at different temperatures (4–50°C) demonstrated that all five isolates exhibited optimal growth at 37°C. This temperature preference is significant as it reflects the environmental conditions typically encountered in food fermentation processes and human gastrointestinal tracts (Uysal et al., 2009). The ability of these isolates to thrive under various temperature conditions highlights their potential adaptability and robustness, which are desirable traits for industrial and probiotic applications (Rao et al., 2022). The tolerance of all five isolates to salt concentrations up to 4% is noteworthy as it indicates their ability to survive and potentially ferment in environments with moderate salt levels (Paludan-Muller et al., 1999).
The isolates exhibited phenol and pH tolerances ranging from 6.25 ± 0.11 to 9.15 ± 0.15 and 5.42 ± 0.02 to 9.90 ± 0.56, respectively, after 24 h incubation. Among them, RAMULAB51 demonstrated notable tolerance to both pH and phenol (Table 2). Lactobacillus spp. Tolerance to phenol and pH is important in various applications, where survival in acidic environments and resistance to chemical stressors like phenol are critical for their functionality and efficacy (Huligere et al., 2022). This characteristic is advantageous for their utilization in fermenting salty foods or in conditions where salt is used as a preservative (Kumari et al., 2022). The carbohydrate fermentation assays revealed varying levels of activity in response to different sugars, as detailed in Table 3. The primary end products of carbohydrate fermentation by LAB include lactic acid, acetic acid, and other organic acids, depending on the substrates fermented. RAMULAB51 ferments all sugars except D-xylose and L-xylose, likely producing lactic acid as the main product and possibly acetic acid. RAMULAB28 has a similar profile but ferments one less sugar, likely yielding both lactic and acetic acids. RAMULAB26 and RAMULAB27 can ferment several sugars, suggesting the production of both acids. In contrast, RAMULAB25 shows a limited profile, likely producing lactic acid only where fermentation occurs. This variability in sugar metabolism underscores the metabolic diversity among the isolates and suggests potential differences in their fermentation capabilities (Dellias et al., 2018). LAB’s carbohydrate utilization profiles are crucial for predicting their fermentation pathways and the range of food products they can produce (Kingston et al., 2010).
Table 2
www.frontiersin.org
Table 2. Phenol tolerance and the growth of Neera isolates at different pH levels.
Table 3
www.frontiersin.org
Table 3. Carbohydrate fermentation activity of LAB isolates in response to different sugars.
3.2 Molecular identification
The sequences obtained from Neera isolates varied in length, ranging from 1,249 to 1,582 base pairs after amplification. The sequences of the isolates were submitted to GenBank, obtaining the accession numbers RAMULAB25 (Lacticaseibacillus casei, GenBank: OK376494.1), RAMULAB26 (Lacticaseibacillus paracasei, GenBank: OK376500. 1), RAMULAB27 (Limosilactobacillus fermentum, GenBank: OK376497.1), RAMULAB28 (Lacticaseibacillus paracasei, GenBank: OK376502.1), and RAMULAB51 (Levilactobacillus brevis, GenBank: ON171686.1). Levilactobacillus brevis strains similar to RAMULAB51 have also been documented by Phani Kumari et al. (2024) and identified as Levilactobacillus brevis MYSN105 (Somashekaraiah et al., 2019).
Using maximum likelihood with the Tamura-Nei model on nucleotide data from these eight taxa, covering 1,582 sites, phylogenetic analysis was performed. This comprehensive molecular characterization enhances our understanding of the evolutionary relationships and taxonomy of these bacteria, shedding light on their ecological roles in Neera and potentially other environmental contexts (Harris et al., 2017). The tree was constructed using the BioNJ method and was applied to a matrix of pairwise distances, estimated using the Tamura-Nei model, for the initial tree construction in the heuristic search (Figure 1). Ancestral nucleotide states were inferred and ranked by likelihood at each node, with only those states above a 5% probability threshold displayed. Examination of substitution rates highlighted key transitions, such as A->G and T->C, suggesting patterns of evolutionary change specific to the taxa under study. The phylogenetic analysis included an ingroup of five taxa, with MT882202.1 Lactiplantibacillus plantarum strain DFRN2 designated as the outgroup. Using the outgroup sequence enabled the phylogenetic tree to be rooted, providing a reference point that clarified the evolutionary relationships among the ingroup taxa.
Figure 1
www.frontiersin.org
Figure 1. Comparison of phylogenetic trees for strains isolated from Neera (Ingroup) and reference outgroup, using maximum likelihood bootstrap 1,000 analysis of 16S rRNA sequences.
3.3 Probiotic properties
In this study, we explored the flexibility of five isolates under conditions simulating the gastrointestinal environment. Cell membrane composition and efflux transporters help probiotics maintain cellular integrity and functionality in the presence of bile. Understanding these bile tolerance mechanisms is crucial as they highlight the role of probiotics in promoting gut health and aiding in the development of effective probiotic formulations (Ruiz et al., 2013). The survival rates of different Neera isolates were evaluated at two concentrations of oxgall (0.3 and 1%) and at two time points (2 h and 4 h). The highest survival rate was observed for the strain RAMULAB51 at 0.3% ox gall after 2 h, with a survival rate of 97.34% ± 0.54. On the other hand, the lowest survival rate was noted for the strain RAMULAB26 at 1% ox gall after 4 h, with a survival rate of 85.45% ± 0.15 (Figure 2A). Conversely, Phani kumari et al. study showed 10 isolates obtained from Neera samples from Choutuppal in Nalgonda, Telangana, exhibited a highly efficient 24-h survival rate of 1.8 when it was exposed to acid bile concentrations of 0.05 and 0.3%, respectively (Phani Kumari et al., 2024).
Figure 2
www.frontiersin.org
Figure 2. The survival rates of isolates at acidic pH 2 and various bile salt concentrations were assessed by incubating the strains for 2 and 4 h at 37°C with (A) 0.3 and 1% bile salt concentrations. Additionally, survival rates in (B) Gastric and intestinal juices were measured at 1, 3, 5, and 8 h, (C) Autoaggregation, and (D) Coaggregation of isolates with M ± SD compared using Duncan’s MRT and significant differences denoted by different superscripts (#, a–e) (p < 0.05).
The tolerance tests for gastric and intestinal juices show notable differences among isolates. RAMULAB25 had high gastric juice tolerance at 1 h (84.53%) but decreased to 79.17% at 3 h. Its intestinal juice tolerance was 83.54% at 1 h, dropping to 67.48% at 8 h. RAMULAB26 exhibited the highest gastric juice tolerance, with 91.54% at 1 h and 89.52% at 3 h, and strong intestinal juice tolerance (85.13% at 1 h, 64.08% at 8 h). RAMULAB27 also showed good gastric juice tolerance (89.85% at 1 h, 81.98% at 3 h) and consistent intestinal juice tolerance, with 60.71% at 8 h. RAMULAB28 had 86.91% tolerance in gastric juice at 1 h and 88.78% in intestinal juice at 1 h, decreasing to 67.34% at 8 h. RAMULAB51 showed the highest overall tolerance, with 92.04% in gastric juice at 1 h and 88.89% in intestinal juice at 1 h, dropping to 69.58% at 8 h. Overall, RAMULAB51 had the highest tolerance across both juices, while RAMULAB26 and RAMULAB28 also demonstrated strong tolerance, especially in gastric juice (Figure 2B).
The cell surface hydrophobicity of the five bacterial isolates was measured and expressed as a percentage. The isolate RAMULAB51 exhibited the highest hydrophobicity at 78.14% ± 0.61, followed closely by RAMULAB25 with 76.21% ± 0.06. On the other hand, RAMULAB27 had the lowest hydrophobicity at 63.95% ± 0.04. The isolates RAMULAB28 and RAMULAB26 showed intermediate levels of hydrophobicity, with values of 72.05% ± 0.09 and 67.14% ± 0.12, respectively (Table 4). In Farid et al.’s study, the highest hydrophobicity observed among the LAB strains was 56.65%, with even the most adherent strain (WFA1) showing an adherence percentage of 55.48% (Farid et al., 2021). Reuben et al.’s findings also indicated lower hydrophobicity values, with isolates from crops showing a range of 70.0 ± 2.84–71.0 ± 8.48, while isolates from the intestine had values ranging from 40.5 ± 12.02 to 61.5 ± 3.54 (Reuben et al., 2019). In our study, significantly higher hydrophobicity levels, with RAMULAB51 reaching 78.14% ± 0.61, which is considerably above the values observed in both Farid et al.’s and Reuben et al.’s studies (Reuben et al., 2019; Farid et al., 2021). Even the isolate with the lowest hydrophobicity in your study, RAMULAB27, exhibited 63.95% ± 0.04, which is higher than the highest value reported by Farid et al. and comparable to the higher range of Rueben et al.’s isolates. Our results indicate a stronger hydrophobic interaction, suggesting potentially better adhesion capabilities of our bacterial isolates to surfaces, which could be advantageous in applications where high adhesion is desired.
Table 4
www.frontiersin.org
Table 4. Assessment of cell surface hydrophobicity of Neera isolates.
The auto-aggregation ability of five strains was assessed over a time course of 2, 4, 6, 10, and 24 h. The highest auto-aggregation was observed in strain RAMULAB51, which reached 92.23% ± 0.04 at 24 h. Conversely, the lowest auto-aggregation was recorded in strain RAMULAB27 at the 2-h mark, with a value of 23.13% ± 0.12. Across the strains, auto-aggregation generally increased with time. RAMULAB51 consistently showed higher aggregation across all time points, starting from 64.13% ± 0.04 at 2 h to the peak at 24 h (Figure 2C). In contrast, RAMULAB27 exhibited lower initial auto-aggregation but also showed a significant increase over time, ultimately reaching 92.01% ± 0.02 at 24 h. This suggests that although RAMULAB27 may require more time to establish aggregation, it can ultimately form strong communities, which could be beneficial in prolonged gastrointestinal colonization.
Coaggregation with other bacterial species is critical for inhibiting pathogen colonization through competitive exclusion and the formation of mixed-species biofilms (Vlková et al., 2008). The co-aggregation ability of the five RAMULAB isolates with various bacterial species was assessed and is reported as a percentage. RAMULAB27 and RAMULAB51 exhibited the highest co-aggregation percentages with Bacillus subtilis, achieving 13.23% ± 0.17. These two isolates also showed significant co-aggregation with Micrococcus luteus, both reaching 36.16% ± 0.05, This strong coaggregation indicates a high potential for RAMULAB27 and RAMULAB51 to interact with and possibly outcompete other microbial species in the gut, which is a desirable trait for probiotics. Among the other isolates, RAMULAB25 showed the highest co-aggregation with Micrococcus luteus at 26.82% ± 0.16, and with Pseudomonas aeruginosa at 23.14% ± 0.28. RAMULAB26 demonstrated the highest co-aggregation with Salmonella typhimurium at 13.69% ± 0.98 and with Escherichia coli at 19.11% ± 0.45. RAMULAB28 displayed moderate co-aggregation with Micrococcus luteus (28.18% ± 0.03) and lower co-aggregation percentages with the other tested bacterial species. The maximum co-aggregation was observed between RAMULAB27 and RAMULAB51 with Micrococcus luteus, while the lowest co-aggregation was noted between RAMULAB25 and Bacillus subtilis at 5.89% ± 0.03 (Figure 2D).
The auto-aggregation and co-aggregation abilities of LAB strains provide valuable insights into their potential as probiotic candidates (Hojjati et al., 2020). Comparing these results with previous studies reveals important similarities and differences in aggregation behaviors (Li et al., 2015). Our study findings align with the outcomes reported by Ramos et al., who observed the highest auto-aggregation in L. plantarum SAU96 and L. fermentum CH58 at 61.9 and 55.1%, respectively (Ramos et al., 2013). Our study’s strains show much higher auto-aggregation percentages, particularly RAMULAB51, which surpasses the highest values observed by Ramos et al. The gradual increase in auto-aggregation over time, as seen with RAMULAB27, also echoes the trend reported by Kumari et al., where prolonged incubation led to enhanced auto-aggregation (Kumari V B et al., 2024). This characteristic is beneficial for maintaining a strong presence in the gut environment. Co-aggregation with other bacterial species is essential for competitive exclusion and biofilm formation, which can inhibit pathogen colonization. Our results, in comparison, Li et al. reported that L. salivarius M2-71 had the highest auto-aggregation of 95.6% at 24 h and demonstrated significant co-aggregation with enteropathogenic E. coli and Salmonella typhimurium. RAMULAB strains show high co-aggregation with Micrococcus luteus and varying levels with other species, reflecting a broader range of interactions compared to the more specific co-aggregation patterns observed by Li et al. (2021). The high auto-aggregation percentages observed in your study suggest that RAMULAB strains are strong candidates for probiotic use, with the potential for effective colonization and interaction with other microbial species in the gut. This enhances their ability to maintain a beneficial presence and potentially inhibit pathogen colonization (Kazou et al., 2018).
The adhesion percentages of five bacterial isolates to HT-29 cells, a human colorectal cancer cell line used to study bacterial interactions with intestinal epithelial cells, reveal varying adhesion abilities. RAMULAB51 exhibits the highest adhesion at 79.45% ± 0.01%, indicating its superior ability to adhere to these cells. RAMULAB28 follows with a high adhesion percentage of 76.02% ± 0.31%. RAMULAB26 and RAMULAB27 show moderate adhesion levels, at 71.96% ± 0.04 and 66.13% ± 0.02%, respectively. RAMULAB25 has the lowest adhesion at 64.65% ± 0.01%. Table 5 findings suggest that RAMULAB51 and RAMULAB28 are most effective for applications requiring strong bacterial adhesion to intestinal cells, whereas RAMULAB25’s lower adhesion capability may limit its effectiveness in such contexts.
Table 5
www.frontiersin.org
Table 5. Adhesion was assessed based on the percentage of Neera isolates that adhered to HT-29 cells.
In comparison to other studies, such as those by Fonseca et al., where the adhesion of isolates did not vary significantly from that of the control strain L. paracasei LBC-81 on HT-29 cells, our findings reveal notably higher adhesion percentages (Fonseca et al., 2021). Fonseca et al. observed that while L. paracasei CCMA 0505 had higher adhesion to Caco-2 cells compared to the control strain, the differences on HT-29 cells were not statistically significant (Fonseca et al., 2021). This contrast highlights that RAMULAB51 and RAMULAB28 may have enhanced adhesion properties that are not only strain-specific but also cell-line-dependent.
In the study by Dhanani et al., Lactobacilli strains exhibited notable antagonistic effects on E. coli O26 adhesion to HT-29 cells. Specifically, L. rhamnosus GG and L. plantarum CS24.2 reduced E. coli adhesion through mechanisms such as competitive inhibition, adhesion interference, and displacement assays, indicating a competitive advantage in adhering to intestinal epithelial cells and potentially displacing pathogens (Dhanani and Bagchi, 2013). The strong adhesion abilities of RAMULAB51 and RAMULAB28 observed in our study suggest that these strains might also be effective in outcompeting pathogenic bacteria, similar to the effects seen with L. rhamnosus GG and L. plantarum CS24.2. These findings underscore the importance of strain-specific characteristics and cell-line interactions in evaluating bacterial adhesion and their potential applications in preventing or managing intestinal infections.
Table 6 data reveals the inhibition zones (in millimeters) for various bacterial isolates against different pathogens, highlighting the effectiveness of each isolate. RAMULAB25 demonstrates moderate inhibition with the most substantial zone against M. luteus (20 mm) and no inhibition against K. aerogenes. RAMULAB26 shows broad effectiveness, particularly against P. aeruginosa and M. luteus (21 mm each), but no activity against K. aerogenes. RAMULAB27 exhibits varied inhibition patterns, with the highest zone against P. aeruginosa (20 mm) and the lowest against K. pneumoniae (5 mm). RAMULAB28 displays significant inhibition against M. luteus (22 mm) and E. coli (13 mm), with no inhibition of K. aerogenes. RAMULAB51 shows moderate inhibition across pathogens, with the largest zones against M. luteus (24 mm) and the smallest against B. subtilis (6 mm). The overall results suggest that different isolates have varying degrees of effectiveness, ranging from broad-spectrum inhibition to more specific activity. In comparing our results with those reported by Phani Kumari et al., it is evident that both studies reveal variability in antibacterial activity among different isolates (Phani Kumari et al., 2024). Our data shows that RAMULAB isolates exhibit a range of effectiveness, with RAMULAB26 and RAMULAB28 demonstrating significant inhibition against multiple pathogens, similar to the high activity observed for Isolate 3 against Pseudomonas in Phani Kumari et al.’s study. While our isolates generally showed a broader spectrum of activity, including notable inhibition against M. luteus and E. coli, Phani Kumari et al.’s isolates were more selective, with specific isolates exhibiting pronounced activity against Pseudomonas and Klebsiella pneumonia. Both studies indicate that some isolates show no activity against certain pathogens, highlighting the specificity and variability in antibacterial efficacy. This comparison underscores the diverse potential of bacterial isolates in antimicrobial applications and suggests that further exploration of their mechanisms and applications is warranted (Table 6).
Table 6
www.frontiersin.org
Table 6. Neera isolates antibacterial activity against the pathogens.
The antibiotic susceptibility testing revealed that all bacterial isolates (RAMULAB25, RAMULAB26, RAMULAB27, RAMULAB28, and RAMULAB51) were sensitive to Ampicillin (AMP), Azithromycin (AZM), Streptomycin (STR), and Tetracycline (TET), with inhibitory zones exceeding the standard thresholds for sensitivity. Specifically, they showed high sensitivity to Ampicillin, Azithromycin, Streptomycin, and Tetracycline, with zones surpassing ≥17 mm, ≥13 mm, ≥15 mm, and ≥19 mm, respectively. In contrast, all isolates were resistant to Methicillin (MET) and Vancomycin (V), as indicated by inhibitory zones falling below or equal to the thresholds for resistance, i.e., ≤17 mm for Methicillin and ≤14 mm for Vancomycin. These findings highlight a clear pattern (Table 7). This is consistent with findings from Hana et al., who noted general sensitivity to certain antibiotics among Lactobacillus strains. However, our isolates were uniformly resistant to Methicillin (MET) and Vancomycin (V), reflecting a broader trend of resistance to these antibiotics. This mirrors previous observations where resistance to antibiotics like Methicillin and Vancomycin was common in Lactobacillus species, possibly due to the inherent resistance mechanisms and thicker cell walls of Gram-positive bacteria, as discussed by Hana et al. (2015). The distinct resistance patterns against these antibiotics further underscore the variability in antibiotic sensitivity among bacterial isolates, highlighting the importance of specific susceptibility testing for effective treatment and management.
Table 7
www.frontiersin.org
Table 7. Antibiotic susceptibility testing of the Neera isolates was conducted to evaluate resistance and sensitivity, following the guidelines set by CLSI (2018).
The safety evaluation of the five Neera LAB isolates revealed that they were classified as γ-hemolytic after 48 h of incubation at 37°C, with no zones observed around the colonies. This finding indicates that the isolates are safe for use, making them suitable for probiotic applications. The γ-hemolytic classification means that these isolates do not cause hemolysis of red blood cells, which is a key indicator of reduced pathogenic risk. Such a classification is essential for verifying the safety of probiotics, as hemolytic activity can often signal potential virulence. This γ-hemolytic result is consistent with findings from previous studies (Somashekaraiah et al., 2019; Martiz et al., 2023; Kumari V.B. et al., 2024).
3.4 Enzymes inhibition of α-glucosidase and α-amylase
Diabetes, characterized by high blood glucose levels, requires effective strategies to manage postprandial glucose spikes (Musso et al., 2010). One promising approach involves inhibiting intestinal α-glucosidase, which can slow down carbohydrate digestion and absorption, thereby reducing postprandial hyperglycemia (Ramu et al., 2015). Recent research has focused on finding effective α-glucosidase inhibitors from diverse sources, including plant extracts and various foods (Kim et al., 2011; Patil et al., 2021).
In our study, RAMULAB51 emerged as the most potent inhibitor among the tested isolates, achieving α-glucosidase inhibition rates of 68.45% for CS, 60.18% for CE, and 42.15% for IC. On the other hand, RAMULAB25 showed lower inhibition levels, with 61.12% for CS, 45.56% for CE, and 26.13% for IC (Figure 3A). These findings surpass those from earlier studies, where LAB strains like L. rhamnosus GG and B. bifidum F-35 showed maximum inhibitory activities of 29.57 and 21.82%, respectively (Chen et al., 2014). Our results align with the notion that inhibiting α-glucosidase is an effective method to mitigate carbohydrate absorption and control hyperglycemia (Ron et al., 2002; Oboh et al., 2016). Also, two strains, MBEL1361 and MBEL1397, demonstrated α-glucosidase inhibitory effects sourced from kimchi, exhibited an inhibition of 3.91 ± 0.25%, which is about 2.3 times greater than the control, acarbose (Kwun et al., 2020). Chen et al. (2014) also documented α-glucosidase inhibition in strains like L. casei, L. rhamnosus GG, L. bulgaricus, and L. plantarum, with L. casei showing 0.14 ± 0.08% inhibition and L. rhamnosus GG demonstrating 3.63 ± 0.17% inhibition (Chen et al., 2014). Previous studies have reported varying degrees of α-glucosidase inhibition among LAB strains, with Zeng et al. (2016) noting inhibition levels ranging from 2.5 to 13.7% for strains such as L. rhamnosus and L. plantarum (Zeng et al., 2016).
Figure 3
www.frontiersin.org
Figure 3. Enzymes inhibition by the isolates against α-glucosidase (A) and α-amylase (B). Data are articulated as M ± SD. Duncan’s MRT indicates significant differences among means within the same column, with different letters (a–c) representing statistically distinct groups (p ≤ 0.05).
For α-amylase inhibition, RAMULAB51 again displayed the highest activity, with 80.74% for CS, 61.23% for CE, and 35.12% for IC. This is significantly higher than the previous reports where the highest α-amylase inhibition was 75.19% for L. rhamnosus GG (Chen et al., 2014). On the other hand, RAMULAB28 exhibited the lowest inhibition, with 66.38% for CS, 41.84% for CE, and 24.54% for IC (Figure 3B). This contrasts with previous studies that showed lower inhibition rates, highlighting the efficacy of our isolates and their potential benefits in diabetes management (Talamond et al., 2002; Tirwa et al., 2020; Maradesha et al., 2022). Since the CFS of Levilactobacillus brevis RAMULAB51 demonstrated significant inhibitory activity against α-glucosidase and α-amylase enzymes, further assays were conducted to investigate its potential therapeutic effects. These subsequent experiments were designed to explore the efficacy of RAMULAB51 CFS in modulating enzyme activity, which may have implications for its use in managing conditions such as diabetes by influencing carbohydrate digestion and absorption.
3.5 Cell viability, and differentiation
The effect of CFS from Levilactobacillus brevis RAMULAB51 on cell viability was assessed at various concentrations, as presented in Figure 4. At a concentration of 250 μg/mL, cell viability remained high at 95.7% ± 1.11, indicating minimal impact on cell health. As the concentration increased to 500 μg/mL, cell viability slightly decreased to 92.6% ± 1.52. At 1,000 μg/mL, a more pronounced reduction in cell viability was observed, with values dropping to 83.6% ± 0.11. Further increases in CFS concentration led to progressively lower cell viability, reaching 60.13% ± 0.01 at 1,500 μg/mL, 42.3% ± 0.05 at 3,000 μg/mL, and 38.5% ± 1.25 at 6,000 μg/mL. These results indicate a dose-dependent decrease in cell viability with higher concentrations of CFS from L. brevis RAMULAB51, highlighting the potential cytotoxic effects of the supernatant at elevated concentrations. The graph illustrates the relationship between CFS concentration and cell viability, with a sigmoidal curve fitting the data. The IC50 value (Figure 4), representing the concentration at which cell viability is reduced to 50%, is approximately 1,336.17 μg/mL, as indicated by the vertical dashed line on the graph. This sigmoidal fit highlights the gradual decrease in cell viability with increasing CFS concentration and provides a quantitative measure of the concentration required to achieve a half-maximal inhibitory effect.
Figure 4
www.frontiersin.org
Figure 4. The effect of CFS from Levilactobacillus brevis RAMULAB51 on cell viability at various concentrations. The data points represent M ± SD of cell viability percentages. The sigmoidal curve fit shows a dose-dependent reduction in cell viability was observed with increasing concentrations of CFS. The IC50 value, where cell viability is reduced to 50%, is approximately 1,336.17 μg/mL, indicated by the vertical dashed line on the graph.
Table 8 presents the quantification of triglyceride (TG) and lipid accumulation via Oil-Red O staining at various concentrations of CFS from Levilactobacillus brevis RAMULAB51. On day 5, the absorbance values for the control group were 0.75 ± 0.05, which decreased progressively with increasing CFS concentrations. Specifically, CFS at 250 μg/mL resulted in an absorbance of 0.68 ± 0.04, while CFS at 500 μg/mL and 1,000 μg/mL yielded lower absorbances of 0.55 ± 0.03 and 0.40 ± 0.02, respectively. This trend continued on days 8 and 12, with absorbance values decreasing further in a dose-dependent manner. Relative lipid content, compared to the control group, was significantly reduced in treated groups, with 86% for CFS 250 μg/mL, 68% for CFS 500 μg/mL, and 52% for CFS 1,000 μg/mL. Cytoplasmic TG content also decreased with higher concentrations of CFS, from 50.5 ± 2.3 μg/mg protein in the control group to 28.2 ± 1.5 μg/mg protein in the 1,000 μg/mL CFS-treated group.
Table 8
www.frontiersin.org
Table 8. Quantification of triglyceride and lipid accumulation via Oil-Red O staining.
To assess the impact of CFS on adipogenesis, we analyzed the expression of crucial adipogenic transcription factors like PPAR-γ and C/EBPα, as well as adipocyte-specific genes such as FAS, Adiponectin, and Glut-4. Quantitative real-time PCR was used to measure gene expression levels, and the results are presented in the following graph (Figure 5). Our findings revealed a dose-dependent upregulation of most adipogenic markers as the concentration of CFS increased. Specifically, the expression of PPAR-γ, C/EBPα, Adiponectin, and Glut-4 showed a consistent increase with higher doses of CFS. This upregulation was observed across multiple time points (Day 5, Day 8, and Day 12), with a more pronounced effect at the higher concentrations of 500 μg/mL and 1,000 μg/mL. PPAR-γ serves as a key regulator of adipogenesis, significantly influencing the process of differentiating preadipocytes into mature adipocytes. The observed upregulation of PPAR-γ in a dose-dependent manner indicates that CFS promotes adipocyte differentiation. This suggests that Levilactobacillus brevis RAMULAB51 may enhance adipogenesis through the activation of PPAR-γ, which is critical for lipid metabolism and the maintenance of insulin sensitivity in adipose tissue (Ortuño Sahagún et al., 2012).