(感想)堀田先生の記事:量子力学における基底選択問題とフォンノイマン鎖の終端の「意識」
例の如く、500文字で入りきらなかったので、こちらで投稿します( *ˊᵕˋ* )
「フォンノイマン鎖の終端」についての、痒い所に手が届く、とってもステキな記事をありがとうございます( ᵕᴗᵕ )
この【基底選択問題】について、もっと盛んに(科学哲学として)議論されるようになるといいですよね(ง'̀-'́)ง
数学界(確率統計界)の人たちにも(数学哲学として)、
(古典確率論での無知ではなく、本質的な量子確率状態としての)
量子確率分布からたった一つだけの確率事象だけしか観測されない、
量子確率事象の間の排他性について、
もっと議論されるようになるといいですよね( ⸝⸝•ᴗ•⸝⸝ )
その延長線上で、クオリアについての【意識のハード・プロブレム】との関連性の議論も深化していくと面白そうです( ˊᵕˋ )
個人的には、ある確率分布から、単一の確率事象が選択されたときに、
「その確率量prbに相応する、自己情報量log(prb)」というものについても、併せて議論が進むといいなぁと思います。
低確率の事象が選択されるほど、自己情報量は大きくなる
ことについての解釈、つまり
低確率事象の測定の結果として情報量が新しく生み出されたのか、
あるいは逆に、測定による外部から相互作用を通じて情報量が流れ込むことで、低確率の事象が生起できるようになったのか
についても、面白い論点だと思います( ⸝⸝•ᴗ•⸝⸝ )
※さらに、ある確率分布中の量子確率事象が
p1、p2、p3・・・である時、
それぞれの量子確率事象の自己情報量が、
それぞれがもつ量子確率量によって【異なる】、
つまり各確率事象ごとに、
【各並行世界間での自己情報量の値が異なる】
ということが、そもそもどういうことなのかについても、
面白いと思います(ง'̀-'́)ง
後述するように「情報量」と「物理量である熱」が可換である以上、
各確率事象間・各並行世界間で自己情報量が異なる=物理量が異なる、
ということになるので、
【同一の確率分布に属していたはず】の各確率事象であるにもかかわらず、
各世界毎に物理量 ≒ エネルギーが異なる
(エネルギー保存則に反する)
ということになります。
もちろん、確率分布の「裾」というのは、理論上に限定して言えば
非常にロングテールになっている以上、
そのような確率事象についても、
確率量が厳密に0%でなければ
【コヒーレンス/干渉性】に必ず影響して、
【他の確率事象/並行世界と干渉】
します。(フォンノイマン鎖を、できるだけ長くとれば、
常にどのような対象の系であっても純粋状態と解釈できるので)
さらに、確率量が厳密に0%でなければ、
【数学的な宇宙】【人間原理】
【カリフォルニア大学の野村先生のマルチバース】
などのように、どれだけ低確率でも、私たちの世界においては
【既に実現してしまっている】
あるいは
【未来に起こり得る】
という可能性が常にあります。
このような【極低確率の事象】が生起したケースでは、上で書いた
各並行世界間の【自己情報量の差】【物理量のエネルギーの差】
というものが、非常に大きくなります。
「(各確率事象・各並行世界は)同一の確率分布に由来している」
「干渉性が0ではない」
というところからすれば、
ミクロな量子論から、マクロな非平衡量子統計力学まで
変分原理・自由エネルギー最小化原理・最大エントロピー原理・情報熱力学第二法則などなど、自然界の性質として
「できるだけ均一・一様になろうとする」
という傾向があることからすると、
(自由エネルギー≒フィッシャー情報量であり、
他はエントロピーについてなので)
【情報量ポテンシャル】というものが各並行世界毎に存在
していて、各並行世界の情報量ポテンシャルに差があれば、
様々な物理現象(気流・熱流・対流・確率密度流など)と同じく、
【情報量流れ】が発生
することによって、
各並行世界の情報量ポテンシャルの差を埋める
情報量ポテンシャルを均一・一様にする
(確率分布が一様分布に近づく・エントロピー増大則)
という【確率現象・情報量現象】が、
自然界に存在して、機能していてもおかしくはないのかな、
と思います。
(大数の法則、中心極限定理、大偏差原理などが、そもそもソレ?
純粋に数学的なだけであるはずの理論が、
自然界でも現実に・物理的に機能している?)
情報熱力学の文脈では、
(情報量・相関係数としての)相互情報量と、
(物理量としての)熱が(ある条件下では)可換であること、
そして生物学の文脈では、生命現象は絶えず
ネゲントロピー(情報量)の供給を必要としていること、
トポロジカル物性の文脈では、
物質構造のトポロジーから位相幾何情報を
ネゲントロピーとして取り出せること、
などなどを含めて、
この種の「確率量 ≒ 情報量」としての解釈・議論
({古典確率ではなく、量子確率としての}
確率流、エントロピー流とは、そもそも何か、
ということについても)
が盛り上がるようになると、「情報=物理 It from Qubit」としても、さらに多様な側面・統合的な理解が深まって、非常に面白いと思います( ˊᵕˋ )
改めまして、科学者さんたちには避けられがちな科学哲学的な分野での、素晴らしい解説記事の投稿、まことにありがとうございました( ᵕᴗᵕ )
今後も楽しみにしています(ง'̀-'́)ง