見出し画像

正準変換の母関数

正準変換
正準変換とは、変換後もHamiltonの正準方程式が成り立つ座標変換である。
    変換前            変換後
  $${q_i(\{Q_j\},\{P_j\})}$$          $${Q_j(\{q_i\},\{p_i\})}$$
  $${p_i(\{Q_j\},\{P_j\})}$$  $${\xrightarrow{正準変換}}$$   $${P_j(\{q_i\},\{p_i\})}$$
  $${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial p_i}}$$           $${\dfrac{dQ_i}{dt}=\dfrac{\partial\overline{\mathscr{H}}}{\partial P_i}}$$
  $${\dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial q_i}}$$          $${\dfrac{dP_i}{dt}=-\dfrac{\partial\mathscr{\overline{H}}}{\partial P_i}}$$
  $${\mathscr{H}(\{q_i\},\{p_i\})=\sum p_i\dot{q_i}-\mathscr{L}}$$   $${\mathscr{\overline{H}}(\{Q_i\},\{P_i\})=\sum P_i\dot{Q_i}-\mathscr{\overline{L}}}$$
 ※ $${q_i,  p_i}$$は一般化座標と一般化運動量であるが、変換後の$${Q_i,  P_i}$$は
  Hamiltonの正準方程式を満たす正準変数であり、物理的な次元や
  意味はない。

母関数の導入
Lagrangianの不定性より
 $${\mathscr{L}(\{q_i\},\{\dot{q_i}\},t)=\mathscr{\overline{L}}(\{Q_i\},\{\dot{Q_i}\},t)+\dfrac{dW}{dt}}$$ (1)($${W}$$は母関数)
Hamiltonian の定義より(Legendre 変換)
  $${\mathscr{H}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}(\{q_i\},\{\dot{q_i}\},t)}$$, $${\mathscr{L}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{H}(\{q_i\},\{\dot{q_i}\},t)}$$  (2)
 $${\mathscr{\overline{H}}=\displaystyle\sum_{i=1}^fP_i\dot{Q_i}-\mathscr{\overline{L}}(\{Q_i\},\{\dot{Q_i}\},t)}$$, $${\mathscr{\overline{L}}=\displaystyle\sum_{i=1}^fP_i\dot{Q_i}-\mathscr{\overline{H}}(\{q_i\},\{\dot{q_i}\},t)}$$
(2)を(1)に代入
 $${\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{H}(\{q_i\},\{\dot{q_i}\},t)=\displaystyle\sum_{i=1}^fP_i\dot{Q_i}-\mathscr{\overline{H}}(\{Q_i\},\{\dot{Q_i}\},t)+\dfrac{dW}{dt}}$$   (3)

母関数の独立変数
ここで母関数$${W}$$の変数について考える。
$${\{q_i\},\{p_i\},\{Q_i\},\{P_i\}}$$は互いに独立ではないので、すべてを$${W}$$の変数とすることは出来ない。では、必要な変数はいくつか。
Lagrangianは2変数$${(\{q_i\},\{\dot{q_i}\})}$$であり、$${\mathscr{L}}$$をLegendre 変換して得られるHamiltonianも2変数$${(\{q_i\},\{p_i\})}$$である。(3)式での整合性を考えると$${W}$$も2変数が相応しい。(選ばれなかった2つの変数は選んだ2つの独立変数の関数になる)
$${\{q_i\},\{{p_i}\},\{Q_i\},\{{P_i}\}}$$のうち、2つの変数を選ぶ組み合わせは$${\{q_i\},\{{p_i}\}}$$と$${\{Q_i\},\{{P_i}\}}$$の組み合わせを除くと以下の4通りである。
 i) $${\{q_i\},\{Q_i\}}$$が独立変数 つまり$${W=W_1\{q_i\},  \{Q_i\})}$$
             残りの2変数は $${p_i(\{q_i\},\{Q_i\}),P_i(\{q_i\},\{Q_i\})}$$
 ii) $${\{q_i\},\{P_i\}}$$が独立変数 つまり$${W=W_2\{q_i\},  \{P_i\})}$$
             残りの2変数は  $${p_i(\{q_i\},\{P_i\}),Q_i(\{q_i\},\{P_i\})}$$
 iii) $${\{p_i\},\{Q_i\}}$$が独立変数 つまり$${W=W_3\{p_i\},  \{Q_i\})}$$
             残りの2変数は  $${q_i(\{p_i\},\{Q_i\}),P_i(\{p_i\},\{Q_i\})}$$
 iv) $${\{p_i\},\{P_i\}}$$が独立変数 つまり$${W=W_4\{p_i\},  \{P_i\})}$$
             残りの2変数は  $${q_i(\{p_i\},\{P_i\}),Q_i(\{p_i\},\{p_i\})}$$
では、それぞれについて考える。

i) $${W=W_1(\{q_i\},  \{Q_i\},  t)}$$のとき
  $${\dfrac{dW_1}{dt}=\displaystyle\sum_{i=i}^f\Big(\dfrac{\partial W_1}{\partial q_i}\dot{q_i}+\dfrac{\partial W_1}{\partial Q_i}\dot{Q_i}\Big)+\dfrac{\partial W_1}{\partial t}}$$
 これを(3)に代入すると
  $${\displaystyle\sum_{i=1}^f p_i\dot{q_i}-\mathscr{H}=\displaystyle\sum _{i=1}^fP_i\dot{Q_i}-\mathscr{\overline{H}}+\sum_{i=i}^f\Big(\dfrac{\partial W_1}{\partial q_i}\dot{q_i}+\dfrac{\partial W_1}{\partial Q_i}\dot{Q_i}\Big)+\dfrac{\partial W_1}{\partial t}}$$
  $${\displaystyle\sum_{i=1}^f p_i\dot{q_i}-\mathscr{H}-\sum _{i=1}^fP_i\dot{Q_i}+\mathscr{\overline{H}}-\displaystyle\sum_{i=i}^f\Big(\dfrac{\partial W_1}{\partial q_i}\dot{q_i}+\dfrac{\partial W_1}{\partial Q_i}\dot{Q_i}\Big)-\dfrac{\partial W_1}{\partial t}=0}$$
  $${\displaystyle\sum_{i=1}^f\Big( p_i-\dfrac{\partial W_1}{\partial q_i}\Big)\dot{q_i}-\sum _{i=1}^f\Big(P_i+\dfrac{\partial W_1}{\partial Q_i}\Big)\dot{Q_i}+\Big(\mathscr{\overline{H}}-\mathscr{H}-\dfrac{\partial W_1}{\partial t}\Big)=0}$$
 両辺×$${dt}$$
  $${\displaystyle\sum_{i=1}^f\Big( p_i-\dfrac{\partial W_1}{\partial q_i}\Big)dq_i-\sum _{i=1}^f\Big(P_i+\dfrac{\partial W_1}{\partial Q_i}\Big)dQ_i}$$
                    $${+\Big(\mathscr{\overline{H}}-\mathscr{H}-\dfrac{\partial W_1}{\partial t}\Big)dt=0}$$
 各項を比較して
  $${p_i=\dfrac{\partial W_1}{\partial q_i}}$$  (i-1)    $${P_i=-\dfrac{\partial W_1}{\partial Q_i},}$$  (i-2)
  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_1}{\partial t}}$$ (i-3)($${W_1}$$に$${t}$$が陽に含まれなければ $${\mathscr{\overline{H}}=\mathscr{H}}$$)
 $${p_i,P_i}$$は$${(\{q_i\},\{Q_i\})}$$を変数とする関数である。
 $${p_i=p_i(\{q_i\},\{Q_i\},t)}$$を逆に辿ると
  $${Q_i=p_i^{-1}(\{q_i\},\{p_i\},t)}$$ (i-4)
 これを$${P_i=P_i(\{q_i\},\{Q_i\},t)}$$に代入すると
  $${P_i=P_i(\{q_i\},\{Q_i\},t)=P_i(\{q_i\},\{p_i^{-1}(\{q_i\},\{p_i\},t)\},t)}$$ (i-5)
 (i-4)(i-5)を使って$${\{q_i\},\{p_i\}}$$を$${\{Q_i\},\{P_i\}}$$に変換する式を作ればよい。

ii) $${W=W_2(\{q_i\},\{P_i\},t)}$$のとき
 このまま$${\dfrac{dW_2}{dt}= …}$$といきたいところだが、これでは変数が合わない。
 ここで小細工をする。
 $${W_1(\{q_i\},\{Q_i\},t)}$$から$${W_2(\{q_i\},\{P_i\},t)}$$へのLugendre変換をおこなう。
 $${\{q_i\},t}$$が共通で$${\{Q_i\}\rightarrow \{P_i\}}$$だから
  $${W_2(\{q_i\},\{P_i\},t)=W_1(\{q_i\},\{Q_i\},t)-\displaystyle\sum_{i=1}^f\dfrac{\partial W_1}{\partial Q_i}Q_i}$$
                       ← (i-2)$${\dfrac{\partial W_1}{\partial Q_i}=-P_i}$$
          $${=W_1(\{q_i\},\{Q_i\},t)+\displaystyle\sum_{i=1}^fP_iQ_i}$$  (ii-1)
 (ii-1)の両辺を$${q_i}$$で偏微分すると
  $${\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial q_i}=\dfrac{\partial W_1(\{\partial q_i\},\{Q_i\},t)}{\partial q_i}+\dfrac{\partial }{\partial q_i}\displaystyle\sum_{i=1}^fP_iQ_i}$$
  $${\dfrac{\partial W_2}{\partial q_i}=\dfrac{\partial W_1}{\partial q_i}}$$     (i-1)$${p_i=\dfrac{\partial W_1}{\partial q_i}}$$とあわせて $${p_i=\dfrac{\partial W_2}{\partial q_i}}$$   (ii-2)
 (ii-1)の両辺を$${P_i}$$で偏微分すると
  $${\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial P_i}=\dfrac{\partial W_1(\{\partial q_i\},\{Q_i\},t)}{\partial P_i}+\dfrac{\partial }{\partial P_i}\displaystyle\sum_{i=1}^fP_iQ_i}$$
  $${\dfrac{\partial W_2}{\partial P_i}=Q_i}$$  よって $${Q_i=\dfrac{\partial W_2}{\partial P_i}}$$   (ii-3)
 (ii-1)の両辺を$${Q_i}$$で偏微分すると
  $${\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial Q_i}=\dfrac{\partial W_1(\{\partial q_i\},\{Q_i\},t)}{\partial Q_i}+\dfrac{\partial }{\partial Q_i}\displaystyle\sum_{i=1}^fP_iQ_i}$$
  $${0=\dfrac{\partial W_1}{\partial Q_i}+P_i,         P_i=-\dfrac{\partial W_1}{\partial Q_i}}$$(i-2)と同じ
 (ii-1)の両辺を$${p_i}$$で偏微分すると
  $${\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial p_i}=\dfrac{\partial W_1(\{\partial q_i\},\{Q_i\},t)}{\partial p_i}+\dfrac{\partial }{\partial p_i}\displaystyle\sum_{i=1}^fP_iQ_i,     0=0+0}$$
 (ii-1)の両辺を$${t}$$で偏微分すると
  $${\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial t}=\dfrac{\partial W_1(\{\partial q_i\},\{Q_i\},t)}{\partial t}+\dfrac{\partial }{\partial t}\displaystyle\sum_{i=1}^fP_iQ_i}$$
  $${\dfrac{\partial W_2}{\partial t}=\dfrac{\partial W_1}{\partial t}+0}$$   (i-3)$${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_1}{\partial t}}$$とあわせて
  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_2}{\partial t}}$$   (ii-4)
 まとめると
  $${p_i=\dfrac{\partial W_2}{\partial q_i}}$$ (ii-2)  $${Q_i=\dfrac{\partial W_2}{\partial P_i}}$$ (ii-3) $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_2}{\partial t}}$$   (ii-4)

iii) $${W=W_3(\{p_i\},\{Q_i\},t)}$$のとき
 $${W_1(\{q_i\},\{Q_i\},t)}$$から$${W_3(\{p_i\},\{Q_i\},t)}$$へのLugendre変換をおこなう。
 $${\{Q_i\},t}$$が共通で$${\{q_i\}\rightarrow \{p_i\}}$$だから
  $${W_3(\{p_i\},\{Q_i\},t)=W_1(\{q_i\},\{Q_i\},t)-\displaystyle\sum_{i=1}^f\dfrac{\partial W_1}{\partial q_i}q_i}$$
                       ← (i-1)$${\dfrac{\partial W_1}{\partial q_i}=p_i}$$
          $${=W_1(\{q_i\},\{Q_i\},t)-p_iq_i}$$  (iii-1)
 (iii-1)の両辺を$${q_i}$$で偏微分
  $${\dfrac{\partial W_3(\{p_i\},\{Q_i\},t)}{\partial q_i}=\dfrac{\partial W_1(\{q_i\},\{Q_i\},t)}{\partial q_i}-\dfrac{\partial}{\partial q_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${0=\dfrac{\partial W_1}{\partial q_i}-p_1,      p_1=\dfrac{\partial W_1}{\partial q_i} }$$(i-1)と同じ
 (iii-1)の両辺を$${p_i}$$で偏微分
  $${\dfrac{\partial W_3(\{p_i\},\{Q_i\},t)}{\partial p_i}=\dfrac{\partial W_1(\{q_i\},\{Q_i\},t)}{\partial p_i}-\dfrac{\partial}{\partial p_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_3}{\partial p_i}=0-q_i,      q_i=-\dfrac{\partial W_3}{\partial p_i}}$$   (iii-2)
 (iii-1)の両辺を$${P_i}$$で偏微分
  $${\dfrac{\partial W_3(\{p_i\},\{Q_i\},t)}{\partial P_i}=\dfrac{\partial W_1(\{q_i\},\{Q_i\},t)}{\partial P_i}-\dfrac{\partial}{\partial P_i}\displaystyle\sum_{i=1}^fp_iq_i}$$ $${0=0+0}$$
 (iii-1)の両辺を$${Q_i}$$で偏微分
  $${\dfrac{\partial W_3(\{p_i\},\{Q_i\},t)}{\partial Q_i}=\dfrac{\partial W_1(\{q_i\},\{Q_i\},t)}{\partial Q_i}-\dfrac{\partial}{\partial Q_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_3}{\partial Q_i}=\dfrac{\partial W_1}{\partial Q_i}}$$  (i-2)$${P_i=-\dfrac{\partial W_1}{\partial Q_i}}$$とあわせて $${P_i=-\dfrac{\partial W_3}{\partial Q_i}}$$ (iii-3)
 (iii-1)の両辺を$${t}$$で偏微分
  $${\dfrac{\partial W_3(\{p_i\},\{Q_i\},t)}{\partial t}=\dfrac{\partial W_1(\{q_i\},\{Q_i\},t)}{\partial t}-\dfrac{\partial}{\partial t}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_3}{\partial t}=\dfrac{\partial W_1}{\partial t}+0}$$  (i-3)$${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_1}{\partial t}}$$とあわせて
  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_3}{\partial t}}$$  (iii-4)
 まとめると
  $${q_i=-\dfrac{\partial W_3}{\partial p_i}}$$  (iii-2)  $${P_i=-\dfrac{\partial W_3}{\partial Q_i}}$$ (iii-3)  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_3}{\partial t}}$$  (iii-4)

iv) $${W=W_4(\{p_i\},\{P_i\},t)}$$のとき
 $${W_2(\{q_i\},\{P_i\},t)}$$から$${W_4(\{p_i\},\{P_i\},t)}$$へのLugendre変換をおこなう。
 $${\{P_i\},t}$$が共通で$${\{q_i\}\rightarrow \{p_i\}}$$だから
  $${W_4(\{p_i\},\{P_i\},t)=W_2(\{q_i\},\{P_i\},t)-\displaystyle\sum_{i=1}^f\dfrac{\partial W_2}{\partial q_i}q_i}$$
                       ← (ii-2)$${p_i=\dfrac{\partial W_2}{\partial q_i}}$$
          $${=W_2(\{q_i\},\{P_i\},t)-\displaystyle\sum_{i=1}^fp_iq_i}$$  (iv-1)
 (iv-1)の両辺を$${q_i}$$で偏微分
  $${\dfrac{\partial W_4(\{p_i\},\{P_i\},t)}{\partial q_i}=\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial q_i}-\dfrac{\partial}{\partial q_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${0=\dfrac{\partial W_2}{\partial q_i}-p_i,     p_i=\dfrac{\partial W_2}{\partial q_i}}$$  (ii-2)と同じ
 (iv-1)の両辺を$${p_i}$$で偏微分
  $${\dfrac{\partial W_4(\{p_i\},\{P_i\},t)}{\partial p_i}=\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial p_i}-\dfrac{\partial}{\partial p_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_4}{\partial p_i}=0-q_i,     q_i=-\dfrac{\partial W_4}{\partial p_i}}$$ (iv-2)
 (iv-1)の両辺を$${Q_i}$$で偏微分
  $${\dfrac{\partial W_4(\{p_i\},\{P_i\},t)}{\partial Q_i}=\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial Q_i}-\dfrac{\partial}{\partial Q_i}\displaystyle\sum_{i=1}^fp_iq_i,}$$ $${0=0-0}$$
 (iv-1)の両辺を$${P_i}$$で偏微分
  $${\dfrac{\partial W_4(\{p_i\},\{P_i\},t)}{\partial P_i}=\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial P_i}-\dfrac{\partial}{\partial P_i}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_4}{\partial P_i}=\dfrac{\partial W_2}{\partial P_i}-0}$$  (ii-3)$${Q_i=\dfrac{\partial W_2}{\partial P_i}}$$とあわせて $${Q_i=\dfrac{\partial W_4}{\partial P_i}}$$ ((iv-3)
 (iv-1)の両辺を$${t}$$で偏微分
  $${\dfrac{\partial W_4(\{p_i\},\{P_i\},t)}{\partial t}=\dfrac{\partial W_2(\{q_i\},\{P_i\},t)}{\partial t}-\dfrac{\partial}{\partial t}\displaystyle\sum_{i=1}^fp_iq_i}$$
  $${\dfrac{\partial W_4}{\partial t}=\dfrac{\partial W_2}{\partial t}-0}$$  (ii-4)$${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_2}{\partial t}}$$とあわせて
  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_4}{\partial t}}$$  (iv-4)
 まとめると
  $${q_i=-\dfrac{\partial W_4}{\partial p_i}}$$ (iv-2)  $${Q_i=\dfrac{\partial W_4}{\partial P_i}}$$ ((iv-3)  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_4}{\partial t}}$$  (iv-4)

最後にすべてをまとめる
i) $${W=W_1(\{q_i\},  \{Q_i\},  t)}$$のとき
  $${p_i=\dfrac{\partial W_1}{\partial q_i}}$$(i-1)  $${P_i=-\dfrac{\partial W_1}{\partial Q_i},}$$(i-2)  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_1}{\partial t}}$$(i-3)
ii) $${W=W_2(\{q_i\},\{P_i\},t)}$$のとき
  $${p_i=\dfrac{\partial W_2}{\partial q_i}}$$(ii-2)  $${Q_i=\dfrac{\partial W_2}{\partial P_i}}$$(ii-3)   $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_2}{\partial t}}$$   (ii-4)
iii) $${W=W_3(\{p_i\},\{Q_i\},t)}$$のとき
  $${q_i=-\dfrac{\partial W_3}{\partial p_i}}$$(iii-2)  $${P_i=-\dfrac{\partial W_3}{\partial Q_i}}$$(iii-3)  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_3}{\partial t}}$$  (iii-4)
iv) $${W=W_4(\{p_i\},\{P_i\},t)}$$のとき
  $${q_i=-\dfrac{\partial W_4}{\partial p_i}}$$(iv-2)  $${Q_i=\dfrac{\partial W_4}{\partial P_i}}$$(iv-3)  $${\mathscr{\overline{H}}=\mathscr{H}+\dfrac{\partial W_4}{\partial t}}$$  (iv-4)
     ($${W_1,W_2,W_3,W_4}$$に$${t}$$が陽に含まれなければ $${\mathscr{\overline{H}}=\mathscr{H}}$$)

はじめにも書いたが、変換後の各変数は残りの2変数の関数であり物理的な次元や意味はない。(例えば (i-4)(i-5) を見よ)
$${\mathscr{L}}$$から$${\mathscr{H}}$$への Legendre 変換では、位置$${q}$$と加速度$${\dot{q}}$$から位置$${q}$$と運動量$${ p}$$とはっきり意味づけられているのに対して、ただ正準方程式を満たす変換だということである。

     〇    〇    〇

$${W}$$の変数の場合分けのところから異常に手間取った。たくさんの本やネットの資料をあたっても、本当にさらっとしか書いていない。わたしには難しすぎる。もっと丁寧に書いてほしい。Legendre 変換の理解をもっと深めて、いつかもう一度整理したい。今はこんなもんにしといたろ。やれやれ。

                      → 力学、物理数学の目次へ

いいなと思ったら応援しよう!