見出し画像

さるぶつ牧場 剛体にはたらく力13解答

円形にくり抜かれた円板の重心

 問題はこちらです.

 図のように,半径を直径とする部分をくり抜かれる前は,円の中心 $${o}$$ で力のモーメントがつりあっていることに注目します.

 円盤の質量の面密度を $${\rho}$$ とすると,くり抜いた部分の面積は $${\frac{1}{4}\pi r^2}$$ なので質量は $${\frac{1}{4}\pi r^2\rho}$$ ,くり抜かれた部分の面積は $${\frac{3}{4}\pi r^2}$$ なので質量は $${\frac{3}{4}\pi r^2\rho}$$ である.
 図のように,円の中心 $${o}$$ から,くり抜かれた部分の重心までの距離を $${x}$$ とすると,切り取る前は,2つの部分の力のモーメントは円の中心 $${o}$$ のまわりでつりあっていたので,

$$
\begin{array}{}
\frac{3}{4}\pi r^2\rho\cdot x-\frac{1}{4}\pi r^2\rho\cdot \frac{r}{2}&=&0\\
3x-\frac{1}{2}r&=&0\\
x&=&\frac{1}{6}r
\end{array}
$$

 くり抜かれた部分の重心は円の中心から左に $${\frac{1}{6}r}$$ の点である.

 詳しい説明はこちらのブログか,下の動画を参考にしてください.(テキストには別解を示しています.)



いいなと思ったら応援しよう!

この記事が参加している募集