見出し画像

生成AIとは何か?仕組みやできることをAI専門家がわかりやすく解説

生成AIという言葉をよく耳にするようになりました。生成AIとは何か、どのような種類のものがあるのか、その仕組みはどうなっているのかなどの疑問をお持ちの方も多いのではないでしょうか。

本記事では、生成AIの「種類」「仕組み」「できること」「代表的なサービス」などの基本事項を解説します。最後まで読めば、生成AIの基礎を把握でき、最新のAI動向を素早くキャッチできるようになります。

生成AIとは

生成AIとは、膨大な量の訓練データ(テキストや画像、音声など)を用いて生成モデルを学習させることで、実際に存在するものに似た新しいコンテンツを生成する技術です。

たとえば、たくさんの人の顔画像を訓練データとしてAIモデルを学習した場合、それらの画像に似た新しい顔画像をAIが生成できるようになります。このAI技術には、元データの特徴を捉えるために「確率分布」という数学的な手法を用いています。

生成AIはこの確率分布を利用して新しいデータを「サンプリング」つまり、選び出すことで、似たような新しいデータを生成できるというわけです。

近年では、深層学習という手法を採用することにより、さらにリアルな画像データや音声データを生成できるようになりました。深層学習を使うAIモデルのことを「深層生成モデル」と呼びます。

深層生成モデルの例には、GAN(敵対的生成ネットワーク)やVAE(変分オートエンコーダー)などがあります。これらはより複雑なデータを扱うために特別に設計されたモデルです。

GANやVAEについては、この後で出てくる「生成AIの仕組み」のなかで詳しく解説します。

従来のAIとの違い

AIと呼ばれる技術の存在は以前から広く知られていますが、生成AIは従来のAIと何が違うのでしょうか。これまでのAIは、将来の予測を行う、正誤を判定するなどAIモデルが学習した内容を基に自動化するのが目的でした。電子メールのスパム判別、画像認識、市場の需要予測などがその一例です。

一方、生成AIは過去判定や予測だけでなく、データから学習した内容を基に新しいコンテンツを作成できます。新しいテキストや画像、音声などを自ら新たに生成することができるのがAIとの違いです。

  • 従来のAI:AIに新しく画像を認識させ、その画像が「犬」か「犬以外」かを判別する

  • 生成AI:「犬」のような画像を新たに生成する

例えば、犬の画像をAIモデルに学習させた場合の両者の違いは上記の通りです。この時、両者は上記のような使い分けができます。わかりやすく言えば、データをグループごとに分けるのを得意としているのが「識別系AI」、データを新たに生成するのを得意としているのが「生成系AI」となります。

生成AIの使い方

生成AIを使う際には、入力と出力の関係を理解することが重要です。

例えば、テキストから画像を生成する生成AIでは「木の下で眠っている猫」というテキストを入力すると、AIはその情報に基づいた画像を生成してくれます。

特に、ChatGPTのような入力が「テキスト」のAIでは、プロンプトと呼ばれる入力文が重要です。なぜなら、プロンプトの書き方によってAIの出力精度が大きく左右されるからです。

例えば「明日の天気は?」と尋ねると、AIはあなたの現在地に基づいた天気予報を答えます。一方で「明日の東京の天気は?」と具体的に尋ねると、よりユーザーの意図に合った天気予報を答えてくれるでしょう。

プロンプトが具体的になるほど、生成AIは正確かつ関連性の高い回答を返します

なお、プロンプトの入力方法について詳しく知りたい方は、下記の記事を合わせてご確認ください。
ChatGPTのプロンプトデザインの秘密を解明|深津式・シュンスケ式・ゴールシークプロンプトを紹介

生成AIの種類

生成AIの種類は多岐にわたります。ここでは、主要な生成AIの種類とその特徴、代表的なサービスを紹介します。

それぞれの詳細について、順番にみていきましょう。

テキスト生成

テキスト生成AIは、機械学習と自然言語処理技術を利用し、人間が理解できる自然なテキストを生成する技術です。テキスト生成AIは、コンテンツ作成・レポート作成・チャットボットの対話など、さまざまなアプリケーションで使用されます。

テキスト生成AIの精度は、使用されている言語モデルによって異なります。AIモデルが学習するデータの質や量に依存し、例えば英語や日本語など言語の情報量によっても精度は違うでしょう。世界で最もよく使われている英語の回答精度は、他の言語の回答精度より高い傾向にあります。

ChatGPTなどでは、まるで人間が答えを返しているかのような高精度な回答が可能です。

画像生成

画像生成AIとは、テキストやデータを入力することで自動的に新しい画像を生成する技術です。DALL-E 3のような画像生成AIは、学習元となる画像をAIツールに入力すると入力画像をAIが学習し、それらの画像の特徴を持った全く新しい画像を生成します。

大量の画像データを学習に使えるため、画像生成AIはAI技術の中でも特に進化の速い分野です。最近の画像生成AIツールはどれも精度が高いので、ぜひ一度使ってみてください!

動画生成

動画生成AIは、自動的に動画を作成する技術です。現状、一般公開はされていないですが、2024年2月にOpenAI社が公表した新しいText-To-Videoモデルの「Sora」は世界に新たな衝撃を与え、現在最もホットな分野のひとつです。テキストや画像などの情報を入力すれば、映像や音声を組み合わせて新しい動画を生成します。

動画生成AIは、映画制作・広告・教育コンテンツ・ゲーム開発・報道など幅広い分野で活用され、PoC開発にも役立っています。例えば、特定のキーワードやテーマに基づいたプロモーションビデオの自動生成などが可能です。

さらに、3Dアニメーションや仮想現実(VR)コンテンツの生成やリアルタイムでの動画編集など、より複雑なタスクに対応できるようになってきています。

特にSoraは、画像を入力としてアニメーション化する、動画を入力して動画の一部を編集する、複数の動画をつなげるなどの複雑で高度な作業も自動化できます。

音声生成

音声生成AIは、音声入力やテキスト入力を基に新たな音声を生成する技術です。例えば、ある一人の声を大量に学習させると、その声質を再現した声でさまざまな文章を自由に話す音声を生成します。

また、音声生成AIを用いれば、音楽の自動生成も可能です。例えば、プロンプトで「エモいLo-fiの曲を作って」と入力すると、そのテキストに沿った音楽を簡単に生成できるツールもあります。

マルチモーダルAI

マルチモーダルAIとは、テキスト・画像・音声・動画など、人間の脳のように複数の種類の情報(モーダル)を一度に処理・解析できるAI技術です。従来のAI技術では、テキストや音声など1種類の情報だけを処理可能でした。これを「シングルモーダルAI」といいます。

これに対してマルチモーダルAIは、複数のデータ形式を統合して高度な生成を実現します。ChatGPTはもともとテキスト生成のみに対応するシングルモーダルAIでしたが、2023年12月のGPT-4V実装により画像解析機能と音声出力機能が追加され、マルチモーダルAIになりました。

なお、マルチモーダルAIについて詳しく知りたい方は、下記の記事を合わせてご確認ください。
マルチモーダルAIとは?特徴やできること、代表例を解説

生成AIの仕組み

生成AIはどのような仕組みに支えられているのでしょうか?

生成AIには、機械学習という技術が大きく関係しています。機械学習とは、機械(コンピューター)が大量のデータをインプットしてデータの集合の中に存在するパターンを発見・認識する技術です。

機械学習の代表的な手法は、以下の4つです。

  • 教師あり学習

  • 教師なし学習

  • 強化学習

  • 深層学習(ディープラーニング学習)

生成AIの中核となるAIモデルにも機械学習の手法が用いられており、ChatGPTのGPTでは深層学習という手法を用いています。

教師あり学習(Supervised Learning)

ここでは、機械学習の一手法である教師あり学習について解説します。教師あり学習とは、既知の入力データと出力データを「正解」としてAIモデルを訓練し、学習したルールやパターンを基に未知のデータの出力を予測する手法です。

教師あり学習には「回帰モデル」と「分類モデル」があります。それぞれについて詳しく見てみましょう。

回帰モデル

回帰モデルとは、連続値の入力を用いて将来や未知の事例を予測する教師あり学習の一手法です。
結果を数値化したものを「目的変数」といい、要因を数値化したものを「説明変数」といいます。この例では、住宅価格が目的変数、駅からの距離が説明変数です。

分類モデル

分類モデルは、入力データを属性ごとに分類したいときに使用されるモデルです。異常値検出や画像診断、スパムフィルタなどに活用されます。

例えば、正解データを使って学習したルールやパターンを基に受信したメールがスパムメールかどうかを判別し、スパムフォルダに入れるなどの効率化に役立ちます。

2つのカテゴリに分類する場合は「2値分類」、2つ以上のカテゴリに分類する場合は「多値分類」と呼びます。

教師なし学習(Unsupervised Learning)

続いて教師なし学習について解説します。

正解データを訓練データとして学習に使う教師あり学習とは違い、正解データを与えずにAIモデルを学習させる手法です。入力データ群から似たような特徴を持つデータをグルーピングする、データの特徴量(変数)を少ない特徴量で表してデータを扱いやすくするなどの活用法があります。

ここでは、「クラスタリング」と「主成分分析」について詳しく解説します。

クラスタリング

クラスタリングとは、AIモデルがデータから特徴を学習し、類似性に基づいてグループ化する手法です。クラスタリングによってできたグループのことを「クラスタ」と呼びます。ウォード法やk-meansなどの手法があります。

クラスタリングは分類モデルと似ていますが、訓練に正解データを使う分類モデルに対して、クラスタリングでは正解データは利用しません。

主成分分析

主成分分析(PCA)は、データの特徴量(説明変数)を削減し、新たな説明変数(主成分)にすることでその内容を理解しやすくする分析手法です。分散が最大となる方向を見つけ出し、新たな軸としてデータを変換します。データの次元を減らせるため、データ解釈が容易になります

強化学習(Reinforcement Learning)

強化学習とは、AIモデルが試行する度に報酬を与え、思考錯誤を繰り返して報酬を最大化するような意思決定の仕方を学習させる手法です。試行が適切であるほど高い報酬を与えるため、AIモデルは次第に報酬を高くする方法を学んでいきます。

強化学習の目的は、環境変化に対応できるAIモデルを構築することです。刻一刻と状況が変化する中で最適な判断が必要となる、自動車の自動運転システムなどに活用されています。強化学習には、Q学習やモンテカルロ法などの手法が用いられています。

深層学習(Deep Learning ディープラーニング)

深層学習は、人間の脳の神経回路の仕組みを模してAIモデルの学習能力を高める手法です。入力に対して重みづけしたデータを出力するニューロンを、何層にも重ねたものをディープニューラルネットワークと呼びます。

「教師あり学習」「教師なし学習」「強化学習」の3つは、人間が目的に適した手法を選ぶ必要がありますが、深層学習では、人間が介在しなくてもAIモデルが学習の過程でデータの特徴を認識できます。

音声・画像・自然言語処理など抽象的なデータに対する処理性能が高く、2000年代末から2010年代にかけて急速に普及しました。ここでは、深層学習を用いたAIモデルを紹介します。

GPT

GPT(Generative Pre-trained Transformer)は、OpenAI が開発した大規模言語モデルです。

Transformerと呼ばれる2017年にGoogleが公表した大規模言語モデルのデコーダ部分を利用しており、高度な文章生成能力や複雑な文章理解力を有しています。GPTはChatGPTに実装されているAIモデルです。

2024年4月時点で最新のGPT-4 は、GPT-3やGPT-3.5 の上位モデルです。一回あたりに入力できる質問の文字数は日本語で最大25,000 文字、出力の応答長は2048単語で、長文にも対応しています。

変分オートエンコーダ(VAE:Variational Autoencoder)

VAEは、学習したデータの特徴を捉え、類似の画像を生成する生成モデルです。データの高次元分布を低次元の「潜在変数」にマッピングするために用います。

エンコーダとデコーダという2つの要素から構成され、まずエンコーダで入力画像を潜在変数に変換し、その後デコーダにより潜在変数から新しい画像を生成します。

VAEは、潜在変数が確率分布に従うように設計されたモデルです。新しいデータを生成したり、欠損データを補完したりする際により柔軟なモデリングが可能になりました。

GAN(Generative Adversarial Network)

GANは「生成器(Generator)」と「識別器(Discriminator)」という2つのニューラルネットワークを競わせながら、データを学習させる生成モデルです。

  • 生成器:識別器をだますようにデータを生成

  • 識別器:「本物のデータ」か「生成器によって作られたデータか」を見分ける

生成器と識別器の違いは上記の通りです。

拡散モデル

拡散モデルは、画像やテキスト・音声などのコンテンツを段階的に劣化させた後、劣化の過程をさかのぼり、再構築する過程を学習させた生成モデルです。

下図は、右から左にかけて画像にノイズを加えた後、次に左から右にかけてノイズを除去しています。

GANやVAEよりも高品質の画像を生成することに成功しており、様々な分野への応用が期待されています。Transformerに次ぐ画期的な生成モデルとして今後も目が離せない分野です。

生成AIにできること・できないこと

生成AIを活用するには、生成AIを使ってできること・できないことを把握することが重要です。

生成AIの特性を知らないまま利用すると、期待していた回答を得られない可能性があるので、何ができて何ができないのかを事前にしっかり把握しておきましょう。

生成AIにできること・得意なこと

生成AIは、プロンプトで指示を出すことで人間が作ったような新しいコンテンツを簡単に生成できます。例えば、フィクション作品を書くことや新しいアイディアの創出、さらには、メールの返信などの面倒な作業も効率化できます。
このように、生成AIはクリエイティブな活動から分析的な作業まで、多岐にわたる領域で作業の効率化を支援します。生成AIを活用すれば、これまで人間が手作業で行っていたタスクを自動化し、時間とコストの削減に役立つでしょう。

生成AIにできないこと・苦手なこと

生成AIは主に「計算可能な、明確に定義されたタスク」において強い一方で「主観性、感覚、独創性、長期記憶、曖昧性」など、人間が持つ能力や感性に関連する領域では基本的に弱いといえます。
これからのAI時代に向けて、人間は「生成AIにできないこと・苦手なこと」の能力を伸ばしていくことが重要です。

生成AIの代表的なサービス

生成AIを利用できるサービスの例もご紹介します。テキストベースのツール、画像を生成できるツール、動画を作れるツールなど便利なサービスが数多くリリースされています。たくさんの種類があるので、気になるサービスがあったらぜひ使ってみてください。

ChatGPT

ChatGPTは、OpenAI社が2022年11月に公開したAIチャットボットです。インターネット上に存在する大量のデータを学習し、人間が生成するような自然なテキストを生成できる大規模言語モデル(LLM)です。ユーザーが入力した質問に対して、自然な対話形式で答えてくれます。

最近では、音声や画像、動画の生成も可能になり、マルチモーダルAIとして進化を遂げました。

ChatGPTは、基本的に無料で利用できますが有料版と比べて制約があり、モデルの性能は劣ります(GPT-3.5)。アップグレード版であるChatGPT Plus(有料版) は月額20ドルで、最新のGPT-4が利用可能です。プラグインのカスタマイズも可能になり便利に使えます。

日本語や英語以外にも、スペイン語・中国語など、さまざまな言語に対応しています。

Midjouerney

Midjourneyは、テキストプロンプトから画像を作成する画像生成AIです。Discordというチャットアプリから、チャット形式で操作して利用します。アメリカのデビット・ホルツ氏の研究チームが開発したAIで、Twitter上でMidjourneyの画像が拡散され話題を集めました。

テキストを入力すると、そのキーワードや文章に適したイラストや画像を生成します。例えば「猫」と入力すると、猫の画像が生成されます。

Runway

Runwayは、テキストから動画を生成する生成AIツールの開発をしている企業です。Stability.AIとの協力により「Stable Diffusion」という、テキストから画像を生成するAIも開発しています。Runwayは2023年、Google、Nvidia、Salesforce Venturesなどから1億4,100万米ドルの資金調達に成功しました。

ツールの利用は無料で、アカウントを作成しプロジェクトを立ち上げるだけで誰でも簡単に動画編集を行うことができます。

参考記事:AI Video Startup Runway Raises $141 Million From Google, Nvidia

AudioPaLM

AudioPaLMはGoogleによって開発された音声認識と音声生成に特化した大規模言語モデル(LLM)です。テキストと音声の両方を処理・生成する能力を持ち、テキストベースのLLM「PaLM-2」と音声ベースのLLM「AudioLM」を統合したモデルです

AudioPaLMの特徴は、音声を入力すると声色やイントネーションなどのパラ言語情報を抽出・保持できる点です。大量の多言語データセットで学習したPaLM-2の言語知識を活用しており、短い音声データを基に話者の声を別の言語に変換することもできます。

この技術が進化すれば、音声チャットや多言語対話をより自然に行えるでしょう。

SeamlessM4T

SeamlessM4Tは、Metaが発表したマルチモーダルAIモデルです。約 100 の言語のテキストと音声を認識し、翻訳結果をテキストまたは音声で出力できます。音声出力に対応する言語は、日本語を含む 36 言語です。

SeamlessM4T は、265,000 時間に及ぶ音声とテキストのアライメントを収集したマルチモーダル翻訳データセット「SeamlessAlign」とともに公開されました。

なお、SeamlessM4tについて詳しく知りたい方はこちらをご覧ください。
【SeamlessM4t】Metaの多言語翻訳AI、使い方から実践まで徹底解説

生成AIの国内における動向

生成AIの日本国内における動向を見てみましょう。PwC Japan、IDC Japan、NHKの3社の調査結果を基に解説します。

生成AIの普及と認知度の向上

PwC Japanの調査によると、2023年秋における生成AIに対する認知度と活用の推進度合いは、半年前の春に比べて大幅に向上しています。わずか10%であった生成AI経験者が、半年後には73%まで増加しました。

多くの企業が生成AIを活用または導入検討を行っており、その大半は要約・文章作成などのテキスト生成系ですが、画像や動画、プログラムコード生成などを目的とする回答もあります。

2023年春時点では、73%の回答者が社内における生成AIの活用推進度合を「わからない」もしくは「導入検討していない」と回答していたのに対し、半年後には87%が「活用中」もしくは「検討中」と回答しています。
これらの結果から、近年急速に生成AIのビジネスへの導入や活用が進んでいると推測できます。

企業における生成AIの活用

IDC Japanが2023年に実施した調査によると、日本国内の生成AIに対する期待が世界よりも高いことが示されています。生産性向上に役立つ社内向けの用途(コード生成、会話型アプリケーションなど)への期待が高い一方で、マーケティングアプリケーションへの期待は世界と同様に比較的低い傾向にあります。

国産生成AIの開発動向

日本国内での生成AI開発も進んでいます。NHKの報道によると、豊富な日本語学習データを強みとした国産生成AIの開発が進められており、さまざまな分野での応用が期待されています。

技術者や研究者の待遇改善が課題となっており、長期的な視点での研究環境の整備が必要とされています。

生成AIの今後の展望と課題

日本企業における生成AIの積極的な活用は、国際競争力を高める重要な要素となるでしょう。さらなる認知度の向上や専門人材の育成、適切なガバナンス体制の整備が今後の重要な課題です。

国産生成AIの開発では、日本独自の文化や言語を反映させることが、グローバルな競争において重要な差別化要因となります。

生成AIをビジネスで活用する方法

生成AIは、ビジネスにおいて以下のような活用例があります。

  • ブログのタイトル作成

  • キャッチコピー作成

  • メール文の作成

  • 文章の要約

  • プログラミングのコード生成

  • 自動応答チャットボットの構築

  • ビジネスのトレンド調査

  • 顧客エンゲージメントの向上

生成AIの活用により、作業時間を短縮でき作業者の負担も減らせるため、業務の効率化につながります。また、新しいアイデアを着想する、新しい視点からの洞察を得られることもあるでしょう。

生成AIの活用事例

生成AIの導入に向けて、不安や課題もあるでしょう。具体的な活用事例を知ることで導入イメージがより明確になり、今後の検討に役立ちます。ここでは、ビジネスでの活用事例を5つ紹介します。

事例①コカ・コーラ(情報検索システムの導入)

コカ・コーラでは、AIを使用した情報検索システムが新たに導入されました。

ユーザーの要求に応じて、社内のさまざまなデータファイルから必要な情報を抽出し情報提供を行っています。AIを活用することでより効率的に情報提供できるため、顧客満足度の向上にもつながるでしょう。

また、AIを活用して制作されたアート作品のプラットフォームも立ち上げています。

参考記事:米コカ・コーラ「何が起こるか試したい」 生成AIで商標資産を“民主化”する真意
参考記事:コカ・コーラ、AIを活用したキャンペーンを開始

事例②オルツ(ゲーム開発)

オルツは生成AIを使用して、脱出ゲーム「きまぐれな部屋」を生成しました。「きまぐれな部屋」は、密室に閉じ込められたキャラクター「アイ」とチャットでコミュニケーションを取って親密度を高め、脱出を手助けするゲームです。

このゲーム内のチャットにはAI技術が使われています。オルツのWebサイト「altBRAIN」から実際にプレイできるので、興味のある方は一度プレイしてみてください!

参考記事:オルツ AIが生成した脱出ゲーム「きまぐれな部屋」公開 ノーコードプラットフォーム「altBRAIN」活用

事例③パナソニック(自社向けAIアシスタントサービス)

パナソニックは、業務効率化と社員のAIスキル向上を目的に、自社向けAIアシスタントサービス「ConnectAI」を展開しています。このサービスは、OpenAIの大規模言語モデルのChatGPTを基に構築されており、自社の公式情報を活用しています。特に注目すべき点は、このAIアシスタントが提供する機能の多様性です。

社内の情報提供はもちろんのこと、セマンティック検索技術を採用することで、従来のキーワード検索より精度の高い検索結果を実現しています。また、音声入力や回答の引用元表示機能の開発により、社員はより簡単に情報を検索し、その回答の真偽を確認できるようになっています。

さらに、2023年10月以降はカスタマーサポートセンターでの利用も計画されています。AIの活用により、顧客からの問い合わせに対してスピーディーな対応が可能になり、顧客満足度の向上にもつながることでしょう。

参考記事:パナソニック コネクトのAIアシスタントサービス「ConnectAI」を自社特化AIへと深化

事例④アサヒビール(社内情報検索システム)

アサヒビールは、株式会社丹青社と連携し、生成AIを社内情報検索システムに導入しました。このシステムは、社内の豊富なデータベースからPDF、Word、PowerPointなどの異なる形式の資料をデータ化し、検索可能にすることで業務効率化を目指しています。

「Azure Cognitive Search」と「Cosmos DB」を使用することで、検索結果には資料の概要、サムネイル、100文字程度の要約が表示されるようになっています。

また、異なる形式の文書を統合的に扱うことができるため、情報検索の手間を大幅に削減し、よりスムーズな業務運営が期待できます。

参考記事:生成AIを用いた社内情報検索システムを導入

事例⑤旭鉄工株式会社(改善事例の蓄積と共有)

旭鉄工では、生成AIを活用して製造現場の改善事例を蓄積し、共有しています。従業員が簡単に必要な情報を収集できるような仕組みを作り、ChatGPTにノウハウ集の内容を読み込ませることで、自然言語での質問に対して最適な改善事例を回答できるようにしました。

旭鉄工は愛知県で自動車の金属加工部品を製造しており、IoT(モノのインターネット)を活用したシステムを自社で開発し大きな成果を上げています。特に注目すべきは、2015年度比で年間約4億円の労務費削減と、電力消費量の26%削減に成功している点です。

また、旭鉄工は「横展アイテムリスト」と呼ばれる改善のノウハウ集を作成したことで、改善方法が属人的に管理される問題を解消し、早期の問題対策と人材育成を実現しています。

このリストでは、「要らなくする」「待ちを短くする」「同時に行う」などの上位概念を設定し、改善活動のアイデア出しに活用しているそうです。

参考記事:ChatGPTで製造現場カイゼンを簡単に、過去事例や注意点を引き出す生成AI活用事例

生成AIの危険性

生成AIは幅広く活用でき便利な反面、危険性も潜んでいます。ここでは、生成AIの問題点・危険性についてご紹介します。

情報漏洩のリスク

生成AIを利用する際には、情報漏洩のリスクに注意する必要があります。生成AIは入力された情報をもとに学習するため、そのまま使用すると個人情報や機密情報であっても同様に学習されてしまうのです。可能性は低いものの、情報が不正利用されることも考えられます。

情報の信憑性

ChatGPTは、インターネット上の情報を活用して回答を生成しています。ただし、このためにChatGPTの回答の正確性は保証されておらず、誤った情報源に基づいて誤った回答が生成される可能性もあります。生成された回答は必ずしも最新のものとは限りません。

誤った情報を使用することで実務上の問題が生じたり、企業の信頼性に影響を与えたりする可能性もあるため注意が必要です。

著作権侵害

ChatGPTが生成する回答には、個人情報保護や著作権に関連する情報が含まれる可能性もあります。これらの情報を無意識に引用してしまうことで、法的な問題が発生する可能性もゼロではありません。

ChatGPTを利用する際には慎重に注意し、法的な観点からも適切な引用と情報利用が行われるよう留意することも重要です。生成AIの利用に関しては、このように様々な課題もあり、総務省を中心に議論が進められている状況です。

参考記事:生成AIを巡る議論/総務省

生成AIの危険性への対処法

生成AIの危険性を解説しましたが、リスクに対してどのように対応していけば良いのでしょうか? 次に、生成AIを取り扱う上で重要な「危険性への対処法」をご紹介します。

情報漏洩への対策

ChatGPTの場合は設定変更により、情報漏洩のリスクを回避できます。データの学習を防ぐには、以下の3つの方法が有効です。

  • 「training」を無効にする

  • APIを利用する

  • オプトアウトの手続きを行う

ChatGPTの設定を開き、「Data controls」をタップすると、「Chat history & training」が表示されます。これをオフにすることで、入力したデータの学習を停止させることができます。また、APIを介して生成されたデータは、AIの学習に使用されません

他にも、OpenAIが提供しているオプトアウトの制度を利用することで、AIが入力したデータを学習しないようにできます。リクエストは「User Content Opt Out Request」から送信できます。

情報の信憑性への対策

ChatGPTによって生成された情報の正確性を確認することが重要です。ChatGPTの回答を即座に採用するのではなく、他の人間による確認を組み込んだシステムを構築しましょう。

専門的な情報を扱う場合は、専門家のチェックを導入するとより安心です。

著作権侵害への対策

ChatGPTの使用に関するガイドラインや情報漏洩の予防策を策定する必要があります。これには、適切な利用法や避けるべき行動についての詳細な情報を記載します。それによって、知らないうちに著作権を侵害してしまうような事態を回避できるでしょう。

なお、ChatGPTを企業利用するリスクと対策について詳しく知りたい方は、下記の記事を合わせてご確認ください。
ChatGPTを企業利用するリスクと対策5選|実際の企業事例と共に解説

最新の生成AIの仕組みや活用事例を知って業務に取り入れよう

本記事では生成AIの基本的な内容から代表的なサービスまで詳しく解説しました。

毎日のように最新のAIツールが公開され、生産性向上を求めて様々な分野で生成AIの導入が活発化しています。人材不足が深刻化する社会において企業が競争力を維持するには、生成AIの活用は避けて通れないでしょう。

また、本格的にAI導入を検討するには、実際にツールを触ってみることが大切です。ChatGPTなどのAIツールは誰でも簡単に利用ができるため、社内での運用が不安ということであれば、一度自宅や趣味などの個人用途で試すということもできます。

今や小学生向けの生成AIサービスや生成AIを活用した授業も行われており、生成AIの活用が当たり前という社会になりつつあります。

この流れに乗り遅れないためにも、生成AIの基本や具体的な活用事例を把握し、実際に使ってみることでそれぞれの業務に適したAIツールを見つけることができます。長い間、導入を検討している企業もこれを機に、今回紹介したAIツールを一度使ってみてはいかがでしょうか。

いいなと思ったら応援しよう!