DP-SGDにおけるoptimizerの効果
はじめに
DP-SGDで教師データのプライバシーを保護しつつ、高いテスト精度を実現することを目指します。
学習は以前の記事をベースにしています。
Jupyter Notebookは下記にあります。
概要
ResNet18によるCIFAR-10の学習に、Opacusを用いてDP-SGDを適用する。
DP-SGDの学習におけるoptimizerの影響を確認する。
参考資料
Building an Image Classifier with Differential Privacy (Opacus Tutorials)
https://opacus.ai/tutorials/building_image_classifierPyTorch Quickstart
https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
実装
1. ライブラリのインポート
必要なライブラリをインポートします。
import torch
import torchvision
from torch.utils.data import DataLoader
import sys
from tqdm import tqdm
import matplotlib.pyplot as plt
import numpy as np
from sklearn import metrics
!pip install 'opacus>=1.0'
import opacus
from opacus.validators import ModuleValidator
from opacus.utils.batch_memory_manager import BatchMemoryManager
import warnings
warnings.simplefilter("ignore")
2. 実行環境の確認
使用するライブラリのバージョンや、GPU環境を確認します。
Opacusは1.0.0で書き方が大きく変わっているので注意してください。
Google Colaboratoryで実行した際の例になります。
print('Python:', sys.version)
print('PyTorch:', torch.__version__)
print('Torchvision:', torchvision.__version__)
print('Opacus:', opacus.__version__)
!nvidia-smi
Python: 3.9.16 (main, Dec 7 2022, 01:11:51)
[GCC 9.4.0]
PyTorch: 1.13.1+cu116
Torchvision: 0.14.1+cu116
Opacus: 1.4.0
Sun Mar 26 10:37:33 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
| N/A 69C P8 12W / 70W | 0MiB / 15360MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
3. データセットの用意
データセットの取得
カラー画像データセットのCIFAR-10を、torchvisionを用いて取得します。
以前の結果に基づいて、教師データにdata augmentationは適用せずに、前処理は下記のみを適用します。
ToTensor:データをTensor型に変換
Normalize:各チャネルの平均が0、標準偏差が1となるように標準化
CIFAR10_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR10_STD = (0.2470, 0.2435, 0.2616)
training_data = torchvision.datasets.CIFAR10(
root="data",
train=True,
download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD)]),
)
test_data = torchvision.datasets.CIFAR10(
root="data",
train=False,
download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD)]),
)
4. 学習の関数化
今回は、異なる条件で複数回学習を実行するため、学習部分を関数として定義します。
各エポックのテスト精度と消費した$${\epsilon}$$を出力します。
def training(optim='Adam', lr=1e-3, batch_size = 512):
# make dataloader
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=1024, shuffle=False)
# make model
model = torchvision.models.resnet18()
model = ModuleValidator.fix(model)
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
model = model.to(device)
# make optimizer
criterion = torch.nn.CrossEntropyLoss()
if optim == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=1e-4)
elif optim == 'RMSprop':
optimizer = torch.optim.RMSprop(model.parameters(), lr=lr, weight_decay=1e-4)
elif optim == 'MSGD':
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4)
elif optim == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=1e-4)
# DP-SGD settig
privacy_engine = opacus.PrivacyEngine()
model, optimizer, train_dataloader = privacy_engine.make_private(
module=model,
optimizer=optimizer,
data_loader=train_dataloader,
noise_multiplier=1.0,
max_grad_norm=1.0,
)
# training
test_acc = []
epsilon = []
pbar = tqdm(range(15), desc=f"[optimizer: {optim}]")
for epoch in pbar:
with BatchMemoryManager(
data_loader=train_dataloader,
max_physical_batch_size=64,
optimizer=optimizer
) as memory_safe_data_loader:
model.train()
for (X, y) in memory_safe_data_loader:
X, y = X.to(device), y.to(device)
# optimization step
optimizer.zero_grad()
pred = model(X)
loss = criterion(pred, y)
loss.backward()
optimizer.step()
# calculate epsilon
epsilon.append(privacy_engine.get_epsilon(1e-5))
# test
model.eval()
pred_list = []
y_list = []
with torch.no_grad():
for X, y in test_dataloader:
X, y = X.to(device), y.to(device)
# predict
pred = model(X)
loss = criterion(pred, y)
y_list.extend(y.to('cpu').numpy().tolist())
pred_list.extend(pred.argmax(1).to('cpu').numpy().tolist())
test_acc.append(metrics.accuracy_score(y_list, pred_list))
pbar.set_postfix(epsilon=epsilon[-1],test_acc=test_acc[-1])
return epsilon, test_acc
5. 学習
optimizerを変えて学習を行います。 SGDとMSGDの場合は学習率を0.1に設定します。
result = {}
for optim in ['Adam', 'SGD', 'MSGD', 'RMSprop']:
if optim == 'Adam' or optim == 'RMSprop':
epsilon, test_acc = training(optim=optim, lr=1e-3)
else:
epsilon, test_acc = training(optim=optim, lr=1e-1)
result[optim] = (epsilon, test_acc)
[optimizer: Adam]: 100%|██████████| 15/15 [21:59<00:00, 87.97s/it, epsilon=2.27, test_acc=0.51]
[optimizer: SGD]: 100%|██████████| 15/15 [21:53<00:00, 87.56s/it, epsilon=2.27, test_acc=0.456]
[optimizer: MSGD]: 100%|██████████| 15/15 [21:45<00:00, 87.01s/it, epsilon=2.27, test_acc=0.507]
[optimizer: RMSprop]: 100%|██████████| 15/15 [21:43<00:00, 86.93s/it, epsilon=2.27, test_acc=0.507]
6. 学習結果の表示
学習結果として、消費した$${\epsilon}$$とテストデータの精度を描画します。
for optim, res in result.items():
epsilon, test_acc = res
plt.plot(epsilon, test_acc, label=f'Optimizer: {optim}')
plt.xlabel('Epsilon')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
おわりに
今回の結果
SGD以外のoptimizerは、ほぼ同じ結果となりました。
optimizerによる違いは小さいので、今後もAdamを使用しようと思います。
次にやること
DP-SGDのパラメータを変えることでテスト精度がどう変わるか検証したいと思います。