ノーベル賞、物理学賞も化学賞もAI関連!
本年、ノーベル物理学賞は、ジョン・ホップフィールド氏、ジェフリー・ヒントン氏が受賞した。ノーベル化学賞は、デミス・ハサビス氏が受賞した。物理学賞は、AIによって脳の機能を再現した研究が評価された。化学賞は、AIを使ってタンパク質を予測する研究が評価された。要するに、両方とも純粋な物理・化学ではなく、コンピューターサイエンスを使った研究実績が評価されての受賞である。
これには、伝統的な科学者からは反発の声もありそうだ。
結局、コンピューターサイエンスの能力がないと、ノーベル賞という学術評価においても、ビジネスにおいても、成果を出せない時代になってきたのだ。ということは、伝統的な工学や理学の道に進んでも、報われない時代がきてしまっているのかもしれない。
もう、なんというか、伝統的な科学者にとっては、絶望的な時代になったかもしれない。もちろん、AIを使いこなせれば、今までは自分の頭脳でシミュレーションしていたことがものの数秒でできるようになる。それは「コスパ」「タイパ」の観点からはすごいことだ。だが、人間の試行錯誤する能力が無意味となり、AIが自動でシミュレーションして物理・化学・医学の新発見を生み出してしまうのは、悲しい気持ちにもなる。
こんなことだと、もはや、若者は「医学部とコンピューターサイエンス」以外の学問には興味を持たなくなるかもしれない。
English essay by AI
The recent awarding of the Nobel Prizes in Physics and Chemistry to AI pioneers has sparked significant debate among traditional scientists, particularly regarding the implications for academia and the recognition of contributions from the tech industry.
Reactions from Traditional Scientists
Concerns Over Recognition:
Many traditional scientists express surprise and concern over the Nobel Committee's decision to award prizes for work primarily associated with AI and machine learning. Professor Dame Wendy Hall noted that while the recipients' work is deserving, the lack of a dedicated Nobel category for computer science distorts the recognition process. She remarked that it was "creative" for the committee to categorize Geoffrey Hinton's contributions under physics, but questioned whether this truly represented his work[1][2].
Debate on Scientific Merit:
Critics like Noah Giansiracusa argue that while Hinton's achievements are remarkable, they do not fit neatly into traditional definitions of physics. He emphasized that Hinton's work does not develop new physical theories or solve longstanding problems in physics, raising questions about the appropriateness of the award[1].
Impact on Academia:
The results highlight a growing concern among academics about their ability to compete with Big Tech in research and innovation. Some researchers feel that substantial investments in AI by companies like Google overshadow traditional academic pursuits, leading to a call for increased public funding for research to ensure a balanced scientific landscape[1][2].
Perspectives from Japanese Researchers
Japanese researchers have also reacted with a mix of surprise and admiration:
Recognition of AI's Importance:
Masahiro Murakawa, a deputy director at AIST (National Institute of Advanced Industrial Science and Technology), expressed astonishment at AI being recognized with a Nobel Prize, indicating that such recognition was previously thought unattainable for information technology fields. He acknowledged that this reflects AI's growing significance in scientific research[3].
Praise for Methodological Foundations:
Satoshi Kurihara, president of the Japanese Society for Artificial Intelligence, noted that the use of statistical physics methods in developing machine learning models is groundbreaking. He highlighted how these methods have become essential tools across various scientific disciplines, including physics and life sciences[3].
Calls for Adaptation in Recognition:
There is a growing sentiment among Japanese researchers that the Nobel Prize categories need to evolve to better reflect contemporary scientific advancements, particularly in rapidly developing fields like AI. This could involve creating new categories specifically for innovations within computer science or AI[2][3].
Conclusion
Overall, reactions from both Western and Japanese researchers underscore a critical dialogue about the intersection of traditional academia and emerging technologies like AI. The Nobel Prizes awarded to figures within Big Tech have raised fundamental questions about how scientific contributions are recognized and valued in an era where technology plays an increasingly dominant role in research and innovation.
Citations:
[1] https://www.business-standard.com/technology/tech-news/google-s-nobel-prize-winners-stir-debate-over-company-s-ai-research-124101000628_1.html
[2] https://evrimagaci.org/tpg/google-ai-pioneers-win-nobel-prizes-and-spark-debate-45022
[3] https://mainichi.jp/articles/20241008/k00/00m/040/294000c
[4] https://phys.org/news/2024-10-nobel-prize-physics-awarded-discoveries.html
[5] https://www.utoronto.ca/news/congratulations-pour-geoffrey-hinton-after-nobel-win
[6] https://www.yomiuri.co.jp/science/20241008-OYT1T50195/
[7] https://theconversation.com/machine-learning-cracked-the-protein-folding-problem-and-won-the-2024-nobel-prize-in-chemistry-240937
[8] https://www3.nhk.or.jp/news/special/nobelprize/2024/chemistry/article_01.html
この記事が気に入ったらサポートをしてみませんか?