5点+
中心点$${O}$$
$${O\quad(0,0)}$$
半径1の円周上の5点
$${A\quad(0,1)}$$
$${B\quad(\frac{2\sqrt{2}}{3},\frac{1}{3})}$$
$${C\quad(\frac{1}{\sqrt{3}},-\frac{\sqrt{2}}{\sqrt{3}})}$$
$${D\quad(-\frac{1}{\sqrt{3}},-\frac{\sqrt{2}}{\sqrt{3}})}$$
$${E\quad(-\frac{2\sqrt{2}}{3},\frac{1}{3})}$$
$${AO}$$の延長線と円との交点$${P}$$
$${EO}$$の延長線と円との交点$${Q}$$
$${AP}$$と$${EB}$$の交点$${R}$$
$${AP}$$と$${CD}$$の交点$${S}$$
$${EQ}$$と$${BC}$$の交点$${T}$$
$${x^2+y^2=1}$$
$${x^2+(y-1)^2=\frac{4}{3}}$$
$${y=\frac{1}{3}}$$
$${x^2+y^2=1}$$
$${x^2+(y+1)^2=\frac{4}{3}}$$
$${y=-\frac{1}{3}}$$
$${\vert{}\frac{1}{3}\vert+\vert{}-\frac{1}{3}\vert=\frac{2}{3}}$$
$${\triangle{}APB\sim\triangle{}COS}$$
$${AB:CS=2:1}$$
$${AB=EA=\frac{2}{\sqrt{3}}}$$
$${EB=\frac{4\sqrt{2}}{3}}$$
$${EQ^2-EB^2=4-\frac{32}{9}=\frac{4}{9}}$$
$${BQ=\frac{2}{3}}$$
$${AC=EC}$$
$${CP=\frac{2}{3}}$$と仮定すると、
$${AC=EC=\frac{4\sqrt{2}}{3}}$$
対角線の長さがすべて等しい。
$${ABCDE}$$は正5角形である。
$${BC=DE=\frac{2}{\sqrt{3}}}$$
$${AP^2-AC^2=4-\frac{32}{9}=\frac{4}{9}}$$
$${CP=\frac{2}{3}}$$
$${EQ^2-EC^2=4-\frac{32}{9}=\frac{4}{9}}$$
$${CQ=\frac{2}{3}}$$
$${BQ=CP=CQ}$$
$${BT=CS=CT}$$
$${x軸とBQの交点U}$$
$${BO:PA=1:2}$$
$${BU:PC=1:2}$$
$${\triangle{}BOU\sim\triangle{}PAC}$$
$${BO^2-BT^2=1-\frac{1}{3}=\frac{2}{3}}$$
$${TO=\frac{\sqrt{2}}{\sqrt{3}}}$$
$${CO^2-CS^2=1-\frac{1}{3}=\frac{2}{3}}$$
$${SO=\frac{\sqrt{2}}{\sqrt{3}}}$$
$${CO^2-CT^2=1-\frac{1}{3}=\frac{2}{3}}$$
$${TO=\frac{\sqrt{2}}{\sqrt{3}}}$$
$${\triangle{}ABR\sim\triangle{}COS}$$
$${AB:CO=\frac{2}{\sqrt{3}}:1}$$
$${\frac{BR}{AB}=\frac{2\sqrt{2}}{3}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{2}}{\sqrt{3}}}$$
$${\frac{SO}{CO}=\frac{\sqrt{2}}{\sqrt{3}}\cdot\frac{1}{1}=\frac{\sqrt{2}}{\sqrt{3}}}$$
$${CP=\frac{2}{3}\Longleftrightarrow{}ABCDE}$$は正5角形
$${\therefore}$$
仮定は正しい。
$${CP=\frac{2}{3}}$$である。
$${ABCDE}$$は正5角形である。
$${cf.}$$
辺の長さ$${\frac{2}{\sqrt{3}}}$$の正5角形
外接円の半径 $${1}$$
内接円の半径 $${\frac{\sqrt{2}}{\sqrt{3}}}$$
$${\phi=\frac{2\sqrt{2}}{\sqrt{3}}}$$
「正5角形予想」
$${PO=\frac{\sqrt{2}}{\sqrt{3}}+\frac{1}{3}}$$ではない。$${PO=1}$$である。
$${AS=1+\frac{\sqrt{2}}{\sqrt{3}}}$$ではない。$${AS=\frac{\sqrt{29}}{3}}$$である。
$${AP=\frac{\sqrt{29}}{3}+\frac{1}{3}}$$ではない。$${AP=2}$$である。
$${\therefore}$$
$${\phi=\frac{1+\sqrt{5}}{2}}$$ではない。$${\phi=\frac{2\sqrt{2}}{\sqrt{3}}}$$である。(「正5角形予想」)
「フィボナッチの黄金数は正5角形の黄金比ではない。」
「$${\frac{1+\sqrt{5}}{2}}$$は線分ではない。」
$${2024\cdot12\cdot21}$$