フーリエ解析(1822年)
■大発明たる所以
色々な分野でフーリエ解析(フーリエ変換)が使われます.現在の科学におけるフーリエ変換の貢献は偉大です.フーリエ変換なしでは何も考えられません.例えば,時間とともに変化する信号f(t)は,いろいろな周波数ωのサイン波の信号の振幅が時々刻々変化するものを重畳Σa_{ω}(t)sin(ωt)して表現できます.線形システムというのは,時間の関数の入力f(t)があればA・f(t)が出力され,入力に,f(t)とg(t)があれば,A・(f(t)+g(t))が出力され,いわゆる重ね合わせが成立します.入力信号も出力信号も,重畳成分のいろいろな周波数のサイン波に分解できるというのがフーリエ変換です.分解された個々周波数のサイン波ごとに,ある周波数帯域を除去するフィールタを通すなどして,それらの出力を再び重畳する信号処理が可能です.
赤外吸収IRスペクトルの測定を例にとりましょう.これは,サンプルを透過する光はどのような波長で吸収されるかの測定です.光の波長を順次スキャンし分光しながら測定する方法は普通ですが,FTIRという方法では,分光せず白色光をマイケルソンの干渉計でインターフェログラムにし,これに対するサンプルの吸収を測定して得たデータをフーリエ変換をすれば,波長スキャンのときと同様に吸収スペクトル測定ができます.
結晶学では,結晶空間と逆空間という互いに双対な空間を扱いますが,この両空間は互いにフーリエ変換で変換し合う空間です.イメージが把握できるように,双対という概念に簡単に説明しましょう.例えば,正6面体と正8面体は互いに双対な立体です.この両立体は,面を頂点に,頂点を面に取り換えると互いに移り変われる立体です.置き換える面と頂点の関係とは,結晶格子の基本ベクトルと逆格子の基本ベクトルの関係と言い換えることができます.
■さて,フーリエ級数(展開)とフーリエ変換は,同じ性質のものなのですが,細かいことをいうと違いもあります.
フーリエ級数展開は:
周期的などのような波形も、単純な波形(サイン波)の重ね合わせとして表すことができます。
フーリエ変換では:
周期的でない波形を扱えます.ここで用いる単純な波形(サイン波)の周波数は,フーリエ級数のときのように離散的な倍音のみではなく,周波数のステップが細かくなり,級数は積分になります.
■ジョセフ・フーリエは,熱が固体中をどのように移動するか(熱伝導現象 )を数学的に研究しました.この研究のために,新しい数学的方法を開発しました.これがフーリエ解析の始まりです.
彼が熱伝導に興味を持ったきっかけが,いつのことだか定かではありません.北アフリカにいたときに生じたと推定しているのは,以下のエッセイです.
1798 年, フーリエはナポレオン のエジプト遠征に科学顧問として, モンジ ュやマリ ュ スとともに同行し, エジプトでは考古学上の調査や, カイロ学士院の創設に力を注ぎ,カイロ学士院の書記官にも選出されました. ナポレオンは 1799 年にパリに帰還しますが,フーリエはその後 2 年間エジプトに残りました. 1801 年, フーリエはフランスに帰還し, 再び諸工芸学校の解析学の教授になりますが,翌年 2 月にナポレオンはフーリエをイゼール 県の知事に任命しました.以下のエッセイによると,熱伝導研究の開始は 1802 年頃らしいとされています.
1807,1811年 に論文で,連続物体の温度分布の問題を解いており,フーリエ展開公式を導いています.
彼の研究結果は1822年に、熱の解析理論(Theorie analytique de la chaleur)に掲載され、そこでは、複雑な物理問題をより単純なものに分解して解析する方法が示されました。
フーリエは,複雑な波形を単純な波形の重ね合わせとして表せることを示しました.一般に,古典的な系を説明する方程式は,これらの単純な波のそれぞれについては簡単に解けます.フーリエは,これらの単純な波形を重ね合わせて,複雑な問題全体の解を得る方法を示しました.数学的に言えば,フーリエ級数は,周期的な任意の関数を単純なsin波の種々な高調波(倍音)の重ね合わせとして表す方法で,フーリエ解析は調和解析とも呼ばれます.(下図参照)
周期的でない任意の波形の場合は,整数倍音の高調波の重ね合わせではなく,連続的に変化する高調波の積分で表現するフーリエ変換の概念に拡張できます.
■20世紀半ばにコンピューターが登場するまで,自然の複雑さに立ち向かう武器は,フーリエ解析でした.フーリエ解析の出現以来,科学者はニュートン力学の法則や他の基本的な方程式を直接適用して解ける単純な問題だけではなく,複雑な問題にもそれを使用して解くことができました.19世紀のニュートン科学の偉大な成果の多くは,実際には,フーリエによって最初に提案された方法を使用しなければ不可能でした.その後,これらの方法は,天文学から機械工学まで,さまざまな分野の問題を解決するために使用されました.現在は,画像処理などでコンピュータを用いた高速離散フーリエ解析が行われています.
■ジャン・バプティスト・ジョセフ・フーリエ(1768-1830)
フランスの数学者.オセールに生まれ,9歳で孤児となる.若くして数学の才能を発揮した.フーリエは教会学校や軍人学校で教育を受けた後,フランス革命にあう.彼は数学教師として働いたが,生涯を通じて政治の世界で活躍した.1794年にはテロの被害者を保護して逮捕されたが,ロベスピエールの死後,獄中から釈放され,パリの有名なエコール・ポリテクニークの創設に参加し,その地位はナポレオン政権下での昇進の橋頭堡となった.ナポレオンに同行してエジプトに行き,下エジプト総督に任命された.1801年にフランスに帰国すると,州知事に任命された.1822年にはフランス科学アカデミーの常任書記官に就任し,フランスの科学界で影響力のある地位に就いた.熱伝導の論文は1807,1811年.フーリエ解析の本の出版は1822年.
この記事が気に入ったらサポートをしてみませんか?