電力系統における慣性とは
最近、電力系統の慣性不足が話題となっている。先日開催された電気学会電力・エネルギー部門大会のパネルディスカッションのテーマも慣性であった。
http://pes2020.ieej-pes.org/panel_discussion.html
電力系統において慣性がどのような効果があるのか、どのような原理なのかを基本から説明した資料はあまり見かけない。電力系統における慣性とインバータ電源で慣性を模擬する仮想同期発電機(VSG)に関する研究を10年以上かかわってきたものとして、基礎から解説しようと思う。
物理法則
慣性について理解するうえで必要となる物理法則は二つである。
・エネルギー保存の法則
エネルギーは常に一定であり、どこかに消えたり、どこからか産まれたりしないということである。
・運動エネルギー
動いている物体にはエネルギーが蓄えられているということである。速度の二乗に比例し、速く動くものほど大きなエネルギーを蓄えている。
また、物体の重量が重いほど、大きなエネルギーを蓄えている。
これは、回転体も同様であり、同期発電機の回転子は一定速度で回っており、運動エネルギーが蓄えられているのである。
この二つの物理法則を知っていれば理解できる。
系統シミュレーション
発電機と負荷のみで構成された電力系統を想定し、シミュレーションする。シミュレーションといっても脳内でのイメージだけである。発電機の原動機はエンジンとし、負荷は50kWとする。以下のようなイメージである。
エンジン=発電機----(ケーブル)---負荷(50kW⇒60kW)
10kWの負荷が瞬時で増加した時の現象を脳内シミュレーションする。負荷で消費するエネルギーは10kW増加したことになる。エネルギー保存の法則によれば、どこからか10kWのエネルギーを供給していることとなる。どこから供給されているのか考えてみる。
まず、ケーブルからエネルギーは供給されない。エンジンは、シリンダに燃料を投入して燃えることでエネルギーが伝達される。負荷の変動から瞬時に燃料の投入量が増えることではなく、どうしても数百msは遅れることになる。瞬時瞬時でエネルギー保存の法則は成立するので、エンジンから供給されているわけではない。
ここで、慣性が登場する。発電機の回転子+エンジンの回転部は系統の周波数で回転している。よって、運動エネルギーが蓄積されているのである。負荷が増えた瞬間、その運動エネルギーが放出されることでエネルギー保存の法則が成立しているのである。
運動エネルギーが放出されると、回転子の回転数は下がっていく。系統の周波数は発電機の回転数と同期しているので、系統の周波数が下がっていく。電力工学の基本原則の"需要>供給⇒周波数が下がる"というのはこのためなのである。
慣性と周波数変動
負荷が増えると、運動エネルギーを放出して周波数が下がることが分かった。ここで、発電機の回転部の重量が重いほど、大きな運動エネルギーを蓄えている。なので、重いほど、周波数は下がりにくいこととなる。この回転部の重量がおおよそ慣性である。つまり、系統の慣性が大きいほど、系統の周波数変動は小さくなる。
再エネと慣性
太陽光や風力といった再エネは、同期発電機ではなくインバータを介して系統に連系している。インバータには回転部が無いので、慣性は持っていない。なので、今の電力系統の慣性は従来の同期発電機のみが担っている。再エネが増加して、火力発電所が停止すると、系統に接続されている同期発電機が減っていき、系統全体の慣性が減っていくことになる。慣性が減れば、系統の周波数変動が大きくなることとなり、電源品質が悪化するのである。
まとめ
電力系統の慣性力について、基本原理からまとめてみた。高校物理で学ぶ、基本的な物理現象のみで理解できる簡単な内容である。しかし、最近の電力系統工学の教科書では、あまりこのあたりの原理について詳しく説明されていない。もし基本原理を知りたいのであれば、以下の本が参考となる。
慣性が減少することの対策については、いろんなところで述べられているので、ここでは省略する。