ð§ Shapã§ã¯ããã
SHAPïŒSHapley Additive exPlanationsïŒã¯ãæ©æ¢°åŠç¿ã¢ãã«ã®äºæž¬ã解éããããã«äœ¿çšãããææ³ã§ããããã¯ãååã²ãŒã çè«ã«åºã¥ããã¢ãããŒããæ¡çšããŠãããåç¹åŸŽãã¢ãã«ã®äºæž¬ã«äžããå¯äžãå®éçã«è©äŸ¡ããŸãã
SHAPïŒSHapley Additive exPlanationsïŒå€ã®åºç€ã«ã¯ãã²ãŒã çè«ããæ¥ãã·ã£ãŒãã¬ã€å€ããããŸããã·ã£ãŒãã¬ã€å€ã¯ãã²ãŒã çè«ã®æŠå¿µã§ãããè€æ°ã®ãã¬ã€ã€ãŒãå ±åã§çã¿åºããã²ãŒã ãã®ç·å©çïŒãŸãã¯çµæïŒããåãã¬ã€ã€ãŒãå ¬å¹³ã«åãåãã¹ãè²¢ç®åºŠã«åºã¥ããŠåé ããæ¹æ³ãæäŸããŸãã
ã·ã£ãŒãã¬ã€å€ã®åç
ã·ã£ãŒãã¬ã€å€ã¯ãå šãã¬ã€ã€ãŒïŒãã®å Žåã¯ã¢ãã«ã®ç¹åŸŽãŸãã¯å ¥åå€æ°ïŒã®åçµã¿åããã«ãããŠãç¹å®ã®ãã¬ã€ã€ãŒãã²ãŒã ã®çµæã«ã©ãã ãè²¢ç®ããããèšç®ããŸããããã¯ããã¹ãŠã®å¯èœãªãã¬ã€ã€ãŒã®çµã¿åããã«ããããã®ãã¬ã€ã€ãŒã®ããŒãžãã«è²¢ç®ã®å¹³åãåãããšã§è¡ãããŸããèšç®ã¯ãç¹å®ã®ãã¬ã€ã€ãŒãå«ãå Žåãšå«ãŸãªãå Žåã®ãã²ãŒã ãã®äŸ¡å€ïŒçµæïŒã®å·®ç°ã«åºã¥ããŠããŸãã
SHAPã®äž»ãªç¹åŸŽãšããŠã¯ä»¥äžã®ç¹ãæããããŸãïŒ
ãã£ãŒãã£ãŒã®éèŠæ§ïŒSHAPã¯ãã¢ãã«ã®åãã£ãŒãã£ãŒãäºæž¬ã«ã©ã®çšåºŠåœ±é¿ãäžããŠããããæ瀺ããŸããããã«ãããç¹å®ã®äºæž¬ã«æã圱é¿ãäžãããã£ãŒãã£ãŒãç¹å®ã§ããŸãã
ã¢ãã«ã®è§£éå¯èœæ§ïŒSHAPã¯ãã¢ãã«ã®ããã©ãã¯ããã¯ã¹ãæ§ã解æ¶ãããã®ææ決å®ããã»ã¹ãããéæã«ããŸãã
æ±çšæ§ïŒSHAPã¯ãä»»æã®æ©æ¢°åŠç¿ã¢ãã«ã«é©çšå¯èœã§ãã
SHAPã®å®è£ ã§ã¯ããŸãSHAPã©ã€ãã©ãªãã€ã³ã¹ããŒã«ããæ©æ¢°åŠç¿ã¢ãã«ããã¬ãŒãã³ã°ããåŸã«SHAP Explainerã䜿çšããŠSHAPå€ãèšç®ããŸãããããã®å€ã¯ããµããªãŒãããããäŸå床ããããããã©ãŒã¹ããããããã£ã·ãžã§ã³ãããããªã©ãæ§ã ãªèŠèŠåææ³ãéããŠè¡šçŸã§ããŸããããã«ãããã¢ãã«ãç¹å®ã®äºæž¬ãè¡ãããã®çç±ãç解ããã¢ãã«ã®ãããã°ããã£ãŒãã£ãŒã®éèŠæ§ã®èå¥ãã¢ãã«ã®èª¬æããã€ã¢ã¹ã®ç¹å®ãªã©ãå¯èœã«ãªããŸãã
SHAPã®äœ¿çšã«ãããã¢ãã«ã®è§£éå¯èœæ§ãšéææ§ãåäžãããŠãŒã¶ãŒãèŠå¶åœå±ããã®ä¿¡é ŒãåŸããããªããŸããã¢ãã«ãç¹å®ã®äºæž¬ãè¡ã£ãçç±ã説æããããšã§ãæœåšçãªãã€ã¢ã¹ããããã°ããããŒã¿ã®åé¡ãç¹å®ããã¢ãã«ã®æ±ºå®ãæ£åœåããã®ã«åœ¹ç«ã¡ãŸãã
SHAPïŒSHapley Additive exPlanationsïŒå€ã®èšç®ã«ã¯ãååã²ãŒã çè«ã«åºã¥ããã·ã£ãŒãã¬ã€å€ã䜿çšããŠãæ©æ¢°åŠç¿ã¢ãã«ã®äºæž¬ã«åç¹åŸŽãã©ãã ãå¯äžããŠããããèšç®ããŸããSHAPå€ã®èšç®ããã»ã¹ã¯ä»¥äžã®ã¹ãããã§æ§æãããŸãïŒ
ç¹åŸŽã®å šå¯èœãªçµã¿åããïŒé£åïŒãäœæããŸãã
ã¢ãã«ã®å¹³åäºæž¬ãèšç®ããŸãã
åé£åã«å¯ŸããŠãç¹åŸŽ F ããªãå Žåãšããå Žåã®ã¢ãã«ã®äºæž¬å€ã®å·®ãèšç®ããŸãã
åé£åã§ãç¹åŸŽ F ãã¢ãã«ã®äºæž¬ãå¹³åããã©ã®çšåºŠå€ããããèšç®ããŸããããã F ã®åšèŸºå¯äžã§ãã
SHAPå€ã¯ãã¹ããã4ã§èšç®ãããå€ã®å¹³åãã€ãŸã F ã®åšèŸºå¯äžã®å¹³åãšãªããŸãã
æ°åŠçã«ã¯ãSHAPå€ã¯æ¬¡ã®åŒã§è¡šãããŸãïŒ
ã·ã£ãŒãã¬ã€å€ã¯ãå¹çæ§ã察称æ§ããããŒãå ç®æ§ãšãã£ãç¹æ§ãæºããå¯äžã®è§£ãšãããŠãããSHAPããããã®ç¹æ§ãæºãããŠããŸããSHAPã¯ãå±æçãªç²ŸåºŠãæ¬ æå€ãžã®å¯Ÿå¿ãäžè²«æ§ãšãã3ã€ã®æãŸããç¹æ§ãèšè¿°ããŠããŸãã
SHAPå€ã®èšç®ã¯ãç¹ã«ç¹åŸŽãå€ãå Žåã«ã¯èšç®éãææ°é¢æ°çã«å¢å€§ãããããå®éã«ã¯è¿äŒŒæ¹æ³ã䜿çšãããããšãäžè¬çã§ããè¿å¹ŽãLundbergãšLeeã«ãã£ãŠçºè¡šãããè«æã§ã¯ãSHAPå€ãèšç®ããããã®å¹ççãªææ³ãææ¡ãããŠãããshapã©ã€ãã©ãªãéããŠPythonã§å®¹æã«äœ¿çšã§ããŸãã
ã·ã£ãŒãã¬ã€å€ãæã€ãå¹çæ§ãã察称æ§ãããããŒïŒnull playerïŒããå ç®æ§ããšããåã€ã®ç¹æ§ã¯ãã²ãŒã çè«ã«ãããå ¬å¹³ãªäŸ¡å€åé ãå®çŸ©ããéèŠãªååã§ãããããã®ç¹æ§ã«ãããã·ã£ãŒãã¬ã€å€ã¯ããçš®ã®ã²ãŒã ïŒç¹ã«ã転éå¯èœãªå¹çšãæã€ååã²ãŒã ïŒã«ãããå¯äžã®å ¬å¹³ã§åççãªè§£ãšèŠãªãããŸã
1. å¹çæ§ (Efficiency)
ã²ãŒã ã®ç·å©åŸïŒå šãã¬ã€ã€ãŒã«ãã£ãŠçã¿åºããã䟡å€ïŒã¯ãå šãã¬ã€ã€ãŒã«å®å šã«åé ãããŸããã€ãŸããã²ãŒã ããåŸãããå šå©çã¯ãå šãã¬ã€ã€ãŒã®ã·ã£ãŒãã¬ã€å€ã®åã«çãããªããŸããããã«ãããå©çïŒãŸãã¯è²»çšïŒãç¡é§ãªãããŸãäœåã«çºçããããšãªãåé ãããããšãä¿èšŒããŸãã
2. å¯Ÿç§°æ§ (Symmetry)
äºã€ã®ãã¬ã€ã€ãŒãã²ãŒã ã«ãããŠç䟡ãªåœ¹å²ãæããå ŽåïŒããªãã¡ãäžæ¹ãä»æ¹ãšçœ®ãæãå¯èœã§ããå ŽåïŒããããã®ãã¬ã€ã€ãŒã¯åã䟡å€ïŒã·ã£ãŒãã¬ã€å€ïŒãåãåããŸããããã¯å ¬å¹³æ§ã®èŠ³ç¹ãããç䟡ãªè²¢ç®ã«ã¯ç䟡ãªå ±é ¬ãäžããã¹ãã§ãããšããååã«åºã¥ããŠããŸãã
3. ãã㌠(Null Player)
ããããŒããã¬ã€ã€ãŒãã€ãŸãã²ãŒã ã®çµæã«äœã®åœ±é¿ãäžããªããã¬ã€ã€ãŒã®ã·ã£ãŒãã¬ã€å€ã¯ãŒãã§ããããã¯çŽæçã«ç解ãããããè²¢ç®ã®ãªããã¬ã€ã€ãŒã«ã¯å ±é ¬ããªããšããååã瀺ããŠããŸãã
4. å ç®æ§ (Additivity)
äºã€ä»¥äžã®ã²ãŒã ãåæããå Žåãåãã¬ã€ã€ãŒã®ã·ã£ãŒãã¬ã€å€ã¯ãåã
ã®ã²ãŒã ã§ã®ã·ã£ãŒãã¬ã€å€ã®åèšãšçãããªããŸããããã«ãããç°ãªãã²ãŒã ïŒç¶æ³ãã¿ã¹ã¯ïŒããã®ãã¬ã€ã€ãŒã®ç·è²¢ç®ã¯ãããããã®ã²ãŒã ã«ãããè²¢ç®ã®åçŽãªåèšã«ãã£ãŠèšç®ã§ãããšããæ§è³ªãæã£ãŠããŸãã
ãããã®ç¹æ§ã¯ãã·ã£ãŒãã¬ã€å€ãæã€è§£ã®å
¬å¹³æ§ãšäžè²«æ§ãæ°åŠçã«å®çŸ©ãããããä»ã®ä»»æã®äŸ¡å€åé
æ¹æ³ãšåºå¥ããæ ¹æ ãšãªããŸãããããã®æ¡ä»¶ãæºãã䟡å€åé
æ¹æ³ã¯ãã·ã£ãŒãã¬ã€å€ä»¥å€ã«ååšããªãããšã蚌æãããŠããŸãããã®ãããã·ã£ãŒãã¬ã€å€ã¯ããã¬ã€ã€ãŒéã§åŸãããå©çïŒãŸãã¯è²»çšïŒãåé
ããéã®ãå¯äžã®è§£ããšèŠãªãããããã§ãã
ãé¡ãèŽããŸã