ð§ ããŒã»ãããã³ãšãã¥ãŒãã³ã®éã
ããŒã»ãããã³ãšãã¥ãŒãã³ã¯ã人工ç¥èœãšç¥çµç§åŠã®æèã§ãããã䜿çšãããçšèªã§ããäž¡è ã®éã«ã¯é¡äŒŒç¹ããããŸãããæ確ãªéãããããŸãã以äžã«ãã®äž»ãªéããšé¡äŒŒç¹ã瀺ããŸãïŒ
å®çŸ©:
ããŒã»ãããã³: ããã¯äººå·¥ç¥èœã®é åã§ææ¡ããããæãåºæ¬çãªåœ¢ã®äººå·¥ãã¥ãŒãã³ã¢ãã«ã§ããå ¥åã«å¯ŸããŠéã¿ãæãåããããããåèšããŠã掻æ§åé¢æ°ãé©çšããããšã§åºåãçæããŸãã
ãã¥ãŒãã³: ããã¯çç©ã®ç¥çµç³»ã«ååšãã现èã§ãé»æ°çããã³ååŠçä¿¡å·ãåãåããåŠçããéåºããŸãã
èµ·æº:
ããŒã»ãããã³: 1950幎代ã«Frank Rosenblattã«ãã£ãŠèæ¡ããããæ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã®ååã§ãã
ãã¥ãŒãã³: çç©ã®ç¥çµç³»ã«ãããŠãæ å ±åŠçãšäŒéã®åºæ¬çãªåäœãšããŠæ©èœãã现èã§ãã
æ©èœ:
ããŒã»ãããã³: è€æ°ã®å ¥åãåãåãããããã®éã¿ä»ãã®åãèšç®ãããããããå€ãè¶ ãããã©ããã«åºã¥ããŠ1ãŸãã¯0ã®åºåãçæããŸãã
ãã¥ãŒãã³: è€æ°ã®ãã³ããªããããä¿¡å·ãåãåããããã现èäœã§åŠçããã¢ã¯ãœã³ãéããŠä¿¡å·ãéåºããŸãããã¥ãŒãã³ã®æŽ»åã®ãããå€ãè¶ ãããšãã¢ã¯ã·ã§ã³ããã³ã·ã£ã«ãçºçããæ å ±ãäŒéãããŸãã
é¡äŒŒç¹:
ããŒã»ãããã³ã®ã¢ãã«ã¯ãçç©ã®ãã¥ãŒãã³ã®åããæš¡å£ããããã«èšèšãããŠããŸãããããã£ãŠãå€ãã®æŠå¿µïŒå ¥åã®åãåããåŠçãåºåã®çæïŒãé¡äŒŒããŠããŸãã
äž¡è ãšããè€æ°ã®å ¥åãåãåãããã®å ¥åã«åºã¥ããŠåºåãçæããç¹ã§äŒŒãŠããŸãã
è€éã:
ããŒã»ãããã³: åçŽãªã¢ãã«ã§ãããéç·åœ¢ã®åé¡ãXORã®ãããªåé¡ãçŽæ¥è§£ãããšã¯ã§ããŸããã
ãã¥ãŒãã³: çç©ã®ãã¥ãŒãã³ã¯éåžžã«è€éã§ãå€æ§ãªã¿ã€ããæ©èœãçžäºäœçšããããŸãã
ç°¡åã«èšãã°ãããŒã»ãããã³ã¯çç©ã®ãã¥ãŒãã³ã®éåžžã«åçŽåãããã¢ãã«ã§ãããèšç®ã®æèã§äœ¿çšããããã®ã§ããäžæ¹ããã¥ãŒãã³ã¯çç©ã®ç¥çµç³»ã«å®éã«ååšããè€éãªçŽ°èã§ãã
ã¯ããåäžã®ããŒã»ãããã³ã§ã¯XORã®ãããªéç·åœ¢åé¡ã解ãããšã¯ã§ããŸããããè€æ°ã®ããŒã»ãããã³ãçµã¿åãããŠå€å±€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã圢æããããšã§ãéç·åœ¢åé¡ã解ãèœåãåŸãããŸãã
ãã®ãããªå€å±€ã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãå€å±€ããŒã»ãããã³ãïŒMLP: Multi-Layer PerceptronïŒãšåŒã°ããŸããMLPã¯ãäžã€ä»¥äžã®é ãå±€ãæã€ãã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ãéç·åœ¢ã®æŽ»æ§åé¢æ°ïŒäŸ: ã·ã°ã¢ã€ããReLUãªã©ïŒã䜿çšããŸããããã«ãããMLPã¯éç·åœ¢ã®é¢æ°ãè¿äŒŒããèœåãæã¡ãŸãã
ããã¯ãããã²ãŒã·ã§ã³ãšããåŠç¿ã¢ã«ãŽãªãºã ãçšããŠãMLPã®éã¿ã調æŽããããšã§ãéç·åœ¢ã®åé¡ã«å¯Ÿããé©åãªã¢ãã«ãåŠç¿ããããšãã§ããŸãã
ãããã£ãŠãåäžã®ããŒã»ãããã³ã§ã¯éç·åœ¢åé¡ãçŽæ¥è§£ãããšã¯ã§ããŸããããè€æ°ã®ããŒã»ãããã³ãçµã¿åãããŠåœ¢æãããMLPã䜿çšããããšã§ãéç·åœ¢åé¡ã解ãããšãå¯èœãšãªããŸãã
å€å±€ããŒã»ãããã³ïŒMLP: Multi-Layer PerceptronïŒãšãã£ãŒãã©ãŒãã³ã°ã¯é¢é£ããããŸãããããã€ãã®éãããã¥ã¢ã³ã¹ããããŸãã
å®çŸ©ãšç¯å²:
å€å±€ããŒã»ãããã³ (MLP): MLPã¯ãã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ãäžã€ä»¥äžã®é ãå±€ãæã€ãã®ãæããŸããéç·åœ¢ã®æŽ»æ§åé¢æ°ã䜿çšããŠãéç·åœ¢ã®é¢æ°ãè¿äŒŒããããšãã§ããŸãã
ãã£ãŒãã©ãŒãã³ã°: ãã£ãŒãã©ãŒãã³ã°ã¯æ·±ããã¥ãŒã©ã«ãããã¯ãŒã¯ãã€ãŸãå€æ°ã®é ãå±€ãæã€ãããã¯ãŒã¯ãåŠç¿ããææ³ã®äžéšãæããŸãããã£ãŒãã©ãŒãã³ã°ã«ã¯ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ (CNN)ããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ (RNN)ããã©ã³ã¹ãã©ãŒããŒã¢ãŒããã¯ãã£ãªã©ãå€æ§ãªã¢ãã«ãã¢ãŒããã¯ãã£ããããŸãã
æ·±ã:
MLPã¯ãå€å±€ããšããååã®éããè€æ°ã®å±€ãæã¡ãŸããããã£ãŒãã©ãŒãã³ã°ã®æèã§ãæ·±ãããšããããããã¯ãŒã¯ãããå±€ã®æ°ãå°ãªãããšãäžè¬çã§ãã
ãã£ãŒãã©ãŒãã³ã°ã®ãããã¯ãŒã¯ã¯ããã°ãã°å€æ°ã®é ãå±€ãæã¡ãéåžžã«æ·±ãæ§é ãæã€ããšãç¹åŸŽã§ãã
é©çšç¯å²:
MLPã¯äžè¬çãªåé¡ãååž°ã¿ã¹ã¯ã«äœ¿ãããããšãå€ãã§ãã
ãã£ãŒãã©ãŒãã³ã°ã®ã¢ãã«ã¯ãç»åèªèãé³å£°èªèãæ©æ¢°ç¿»èš³ãã²ãŒã ã匷ååŠç¿ãªã©ãå€æ§ãªã¿ã¹ã¯ãã¢ããªã±ãŒã·ã§ã³ã«å¯ŸããŠé©çšãããŸãã
ç·ããŠãMLPã¯ãã£ãŒãã©ãŒãã³ã°ã®ç¯çã«å«ãŸããåºæ¬çãªãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äžçš®ã§ããããã£ãŒãã©ãŒãã³ã°ã¯ãã®ç¯å²ãé©çšç¯å²ãåºããå€æ§ãªã¢ãã«ãã¢ãŒããã¯ãã£ãæã£ãŠããŸãã
ãã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããã®ååã瀺ãéããæ å ±ãäžæ¹åã«ããã©ã¯ãŒããã«æµãããããã¯ãŒã¯ã®ã¿ã€ããæããŸãã以äžã«ããã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã®äž»ãªç¹åŸŽãšæŠå¿µã説æããŸãïŒ
äžæ¹åã®ããŒã¿ãããŒ: ãããã¯ãŒã¯ã®å ¥åããåºåãžã®ããŒã¿ã®æµãã¯äžæ¹çã§ããã€ãŸãããµã€ã¯ã«ãã«ãŒãã¯ååšããŸããã
å±€ã®æ§æ: äžè¬çã«ããã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã¯ä»¥äžã®3ã€ã®äž»èŠãªå±€ããæãç«ã£ãŠããŸãïŒ
å ¥åå±€: ãããã¯ãŒã¯ãžã®ããŒã¿ã®å ¥åãåãåãå±€ã
é ãå±€: äžã€ãŸãã¯ãã以äžã®äžéçãªå±€ãããã§ã®ãã¥ãŒãã³ã¯ãå ¥åå±€ããã®æ å ±ãåãåãããããåŠçãã次ã®å±€ãžãšæ å ±ãäŒéããŸãã
åºåå±€: æçµçãªäºæž¬ãåé¡çµæãçæããå±€ã
掻æ§åé¢æ°: ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã®åãã¥ãŒãã³ã¯ã掻æ§åé¢æ°ãæã¡ãŸãããã®é¢æ°ã¯ããã¥ãŒãã³ã®åºåã決å®ãã圹å²ãæãããŸããäžè¬çã«äœ¿çšããã掻æ§åé¢æ°ã«ã¯ãã·ã°ã¢ã€ãããã€ãããªãã¯ã¿ã³ãžã§ã³ããReLU (Rectified Linear Unit) ãªã©ããããŸãã
åŠç¿: ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã¯ãéåžžãããã¯ãããã²ãŒã·ã§ã³ãšããææ³ãçšããŠåŠç¿ããŸããããã¯ãããã²ãŒã·ã§ã³ã¯ããããã¯ãŒã¯ã®åºåãšçã®ã©ãã«ãšã®éã®èª€å·®ãèšç®ãããã®èª€å·®ãéäŒæãããŠãåãã¥ãŒãã³ã®éã¿ã調æŽããŸãã
çšé: ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã¯ãåé¡ãååž°ã®ãããªå€ãã®åºæ¬çãªæ©æ¢°åŠç¿ã¿ã¹ã¯ã«é©çšãããŸãã
ãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ãšã®éã: ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ãšå¯Ÿç §çã«ããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ (RNN) ã¯ããããã¯ãŒã¯å ã§ã®ããŒã¿ã®åŸªç°ã蚱容ããããšãç¹åŸŽã§ããããã«ãããæç³»åããŒã¿ãããã¹ããªã©ã®é£ç¶ããããŒã¿ãåŠçããéã«ã以åã®æ å ±ãä¿æããããšãå¯èœã«ãªããŸãã
ãã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããã®ã·ã³ãã«ãªæ§é ãšç解ãããããããå€ãã®æ©æ¢°åŠç¿ã®ååŠè ã«ãšã£ãŠããã¥ãŒã©ã«ãããã¯ãŒã¯ã®åºæ¬çãªæŠå¿µãåŠã¶äžã§ã®åºçºç¹ãšããŠéžã°ããããšãå€ãã§ãã
ãŸããåºæ¬çãªå€å±€ããŒã»ãããã³ïŒMLPïŒã¯ãã£ãŒããã©ã¯ãŒãåã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã§ããæ å ±ã¯å ¥åå±€ããé ãå±€ãéããŠåºåå±€ã«äžæ¹åã«æµããŸãã
ãã©ã³ã¹ãã©ãŒããŒã¢ãŒããã¯ãã£ã¯ãNLP (èªç¶èšèªåŠç) ã®ã¿ã¹ã¯ã«ãããŠéåžžã«äººæ°ã®ããã¢ãã«ã§ãããã©ã³ã¹ãã©ãŒããŒã¯ãèªå·±æ³šæã¡ã«ããºã ãšåŒã°ããç¹æ®ãªæ§é ãæã£ãŠããããã®ã¡ã«ããºã ã«ãã£ãŠã·ãŒã±ã³ã¹å ã®ãã¹ãŠã®åèªãä»ã®ãã¹ãŠã®åèªãšã®é¢ä¿ãåŠç¿ããããšãã§ããŸãã
ãã©ã³ã¹ãã©ãŒããŒã¯ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã§ã¯ãããŸãããäžè¬çãªMLPãšã¯ç°ãªãæ§é ãšæ©èœãæã£ãŠããŸãããã©ã³ã¹ãã©ãŒããŒã¢ãŒããã¯ãã£ã¯ããšã³ã³ãŒããšãã³ãŒãã®ã¹ã¿ãã¯ããæ§æãããŠãããèªå·±æ³šæã¡ã«ããºã ãäœçœ®ãšã³ã³ãŒãã£ã³ã°ãªã©ã®ç¹æ®ãªæ©èœãæã£ãŠããŸãã
ãããã£ãŠããã©ã³ã¹ãã©ãŒããŒã¯ããã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã®äžçš®ã§ãããéåžžã®å€å±€ããŒã»ãããã³ãšã¯ç°ãªãç¹æ®ãªæ§é ãæã£ãŠããŸãã
ãã£ãŒããã©ã¯ãŒãã§ãªããã¥ãŒã©ã«ãããã¯ãŒã¯ã®ä»£è¡šçãªãã®ã¯ãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒRNNïŒã§ããRNNã¯ãåã®ã¹ãããã®æ å ±ã次ã®ã¹ããããžãšäŒããèœåãæã£ãŠããŸãããã®ãããæç³»åããŒã¿ãããã¹ããªã©ã®é£ç¶ããããŒã¿ãæ±ãã®ã«é©ããŠããŸããRNNã®æŽŸçãšããŠã以äžã®ãããªã¢ãã«ããããŸãã
LSTM (Long Short-Term Memory): é·æçãªäŸåé¢ä¿ãåŠç¿ããããã®ã²ãŒãæ©æ§ãæã€RNNã®äžçš®ã§ãã
GRU (Gated Recurrent Unit): LSTMã®ç°¡ç¥åãããããŒãžã§ã³ã§ãã²ãŒãã®æ°ãå°ãªããªã£ãŠããŸãã
ãã©ã³ã¹ãã©ãŒããŒã¢ãŒããã¯ãã£ã«ã€ããŠèãããšãåºæ¬çã«ã¯ãã£ãŒããã©ã¯ãŒãåã®ãããã¯ãŒã¯ã§ãããã ãããã©ã³ã¹ãã©ãŒããŒã®èªå·±æ³šæã¡ã«ããºã ã¯ãå ¥åã·ãŒã±ã³ã¹å ã®ãã¹ãŠã®äœçœ®ã«å¯ŸããŠåæã«èšç®ããããããããæå³ã§ãå šäœçœ®ããã®æ å ±ããäžåºŠã«å©çšããŠããŸãããã®ç¹æ§ã¯ãæç³»åã®äŸåé¢ä¿ãæããRNNãšã¯ç°ãªãã¢ãããŒãã§ãã
ãããã£ãŠããã©ã³ã¹ãã©ãŒããŒã¯ãã£ãŒããã©ã¯ãŒãåã®ã¢ãŒããã¯ãã£ã§ãããªãããèªå·±æ³šæã¡ã«ããºã ãä»ããŠRNNã®ãããªã·ãŒã±ã³ã·ã£ã«ãªæ å ±ã®ååŸèœåãæã£ãŠããŸããããããå³å¯ã«èšãã°ããã©ã³ã¹ãã©ãŒããŒã¯ããã£ãŒããã©ã¯ãŒãã§ãªããã¥ãŒã©ã«ãããã¯ãŒã¯ããšã¯èšããŸããã