スケールを超えて共有される微生物代謝の定量的原理

メインコンテンツへスキップ

  1. 視点

  2. 記事

  • 視点

  • 公開日:2024年8月6日

スケールを超えて共有される微生物代謝の定量的原理



ネイチャー微生物学 音量 9、 ページ1940–1953 ( 2024 )この記事を引用

抽象的な

代謝は、あらゆる細胞や生物の中で起こる化学反応の複雑なネットワークであり、生命を維持し、生態系のプロセスを媒介し、地球の気候に影響を与えています。微生物代謝の実験やモデルは、多くの場合、1 つの特定のスケールに焦点を当てており、分子、細胞、生態系間のつながりが見落とされています。ここでは、スケールを超えて共通性を示す定量的な代謝原理に焦点を当て、微生物の生命に関する統合的な視点を実現するのに役立つ可能性があると主張します。質量、電子、エネルギーのバランスは、代謝ネットワーク、生物、生態系内での流れに定量的な制約を提供し、それぞれが環境にどのように反応するかを形作ります。酵素と基質の相互作用など、これらの流れの基礎となるメカニズムには、細胞と資源、または捕食者と被食者の場合と同様の方程式で表される遭遇と処理の段階が含まれることがよくあります。これらの形式的な類似点は共通の原理を反映していると提案し、実験とモデルによる調査が、スケールを超えて微生物代謝を研究するための共通言語にどのように貢献するかについて説明します。

これはサブスクリプションコンテンツのプレビューです。所属機関からアクセスしてください。

アクセスオプション

所属機関を通じてアクセス

Nature とその他の 54 誌の Nature Portfolio ジャーナルにアクセス

最もお得なオンラインアクセスサブスクリプション、Nature+を入手しましょう

9,800円/ 30日間

いつでもキャンセル可能

もっと詳しく知る

このジャーナルを購読する

12のデジタル版と記事へのオンラインアクセスを受け取る

年間14,900円

1冊あたり1,242円のみ

もっと詳しく知る

この記事を購入する

  • Springer Linkで購入

  • 記事全文PDFにすぐにアクセス

今すぐ購入

価格にはチェックアウト時に計算される現地の税金が適用される場合があります

追加のアクセス オプション:

他の人が閲覧している同様のコンテンツ

代謝交換は自然の微生物群集に遍在する

記事 2023年11月23日

短距離相互作用が微生物群集のダイナミクスと機能を支配する

記事 2020年2月10日

時間と空間における微生物生態系の計算のための代謝モデリング プラットフォーム (COMETS)

記事 2021年10月11日

参考文献

  1. Bar-On, YM, Phillips, R. & Milo, R. 地球上のバイオマス分布Proc. Natl Acad. Sci. USA 115 , 6506–6511 (2018).

    1. Article CAS PubMed PubMed Central Google Scholar

  2. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    1. Article CAS PubMed Google Scholar

  3. López-Urrutia, Á., San Martin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    1. Article PubMed PubMed Central Google Scholar

  4. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    1. Article CAS PubMed Google Scholar

  5. Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).

    1. Article CAS PubMed PubMed Central Google Scholar

  6. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    1. Article CAS PubMed Google Scholar

  7. Lotka, A. J. Elements of Physical Biology (Williams & Wilkins, 1925).

  8. Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).

    1. Article CAS PubMed Google Scholar

  9. Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).

    1. Article PubMed Google Scholar

  10. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    1. Article CAS PubMed PubMed Central Google Scholar

  11. Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).

    1. Article PubMed PubMed Central Google Scholar

  12. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    1. Article CAS Google Scholar

  13. Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    1. Article CAS PubMed PubMed Central Google Scholar

  14. Knoop, H. et al. Flux balance analysis of cyanobacterial metabolism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9, e1003081 (2013).

    1. Article CAS PubMed PubMed Central Google Scholar

  15. Van de Waal, D. B. et al. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J. 5, 1438–1450 (2011).

    1. Article PubMed PubMed Central Google Scholar

  16. Riley, G. A. Factors controlling phytoplankton populations on Georges Bank. J. Mar. Res. 6, 54–73 (1946).

    1. Google Scholar

  17. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  18. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    1. Article CAS Google Scholar

  19. Brown, J. H. & Maurer, B. A. Macroecology: the division of food and space among species on continents. Science 243, 1145–1150 (1989).

    1. Article CAS PubMed Google Scholar

  20. Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    1. Article CAS PubMed PubMed Central Google Scholar

  21. Zehr, J. P. & Kudela, R. M. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 3, 197–225 (2011).

    1. Article PubMed Google Scholar

  22. Ewald, J. et al. Trends in mathematical modeling of host–pathogen interactions. Cell. Mol. Life Sci. 77, 467–480 (2020).

    1. Article CAS PubMed Google Scholar

  23. Handel, A., La Gruta, N. L. & Thomas, P. G. Simulation modelling for immunologists. Nat. Rev. Immunol. 20, 186–195 (2020).

    1. Article CAS PubMed Google Scholar

  24. Heinken, A., Basile, A., Hertel, J., Thinnes, C. & Thiele, I. Genome-scale metabolic modeling of the human microbiome in the era of personalized medicine. Ann. Rev. Microbiol. 75, 199–222 (2021).

    1. Article CAS Google Scholar

  25. Silva, L. C. R. & Lambers, H. Soil–plant–atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 461, 5–27 (2021).

    1. Article CAS Google Scholar

  26. Kumar, M., Ji, B., Zengler, K. & Nielsen, J. Modelling approaches for studying the microbiome. Nat. Microbiol. 4, 1253–1267 (2019).

    1. Article CAS PubMed Google Scholar

  27. Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B. & Bruggeman, F. J. Basic concepts and principles of stoichiometric modeling of metabolic networks. Biotechnol. J. 8, 997–1008 (2013).

    1. Article CAS PubMed PubMed Central Google Scholar

  28. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, 2002).

  29. Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).

    1. Article PubMed PubMed Central Google Scholar

  30. Redfield, A. C. in James Johnstone Memorial 176–192 (Univ. Press of Liverpool, 1934).

  31. Rittman, B. E. & McCarty, P. Environmental Biotechnology: Principles and Applications (McGraw Hill, 2001).

  32. Vallino, J. J., Hopkinson, C. S. & Hobbie, J. E. Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol. Oceanogr. 41, 1591–1609 (1996).

    1. Article CAS Google Scholar

  33. Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    1. Article Google Scholar

  34. Fell, D. Understanding the Control of Metabolism (Portland Press, 1997).

  35. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

    1. Article PubMed PubMed Central Google Scholar

  36. Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Springer, 1996).

  37. Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    1. Article CAS PubMed Google Scholar

  38. Holzhütter, H.-G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004).

    1. Article PubMed Google Scholar

  39. Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007).

    1. Article PubMed PubMed Central Google Scholar

  40. Machado, D., Tramontano, M., Andrejev, S. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    1. Article CAS PubMed PubMed Central Google Scholar

  41. Bernstein, D. B., Sulheim, S., Almaas, E. & Segrè, D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol. 22, 64 (2021).

    1. Article PubMed PubMed Central Google Scholar

  42. Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).

    1. Article CAS PubMed Google Scholar

  43. Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).

    1. Article CAS PubMed PubMed Central Google Scholar

  44. Simensen, V. et al. Experimental determination of Escherichia coli biomass composition for constraint-based metabolic modeling. PLoS ONE 17, e0262450 (2022).

    1. Article CAS PubMed PubMed Central Google Scholar

  45. Henry, C. S., Broadbelt, L. J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007).

    1. Article CAS PubMed Google Scholar

  46. Beard, D. A., Liang, S.-d & Qian, H. Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86 (2002).

    1. Article CAS PubMed PubMed Central Google Scholar

  47. Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).

    1. Article CAS PubMed Google Scholar

  48. Tilman, D. Resource Competition and Community Structure (MPB-17) Vol. 17 (Princeton Univ. Press, 1982).

  49. Sarkar, D. et al. Elucidation of trophic interactions in an unusual single-cell nitrogen-fixing symbiosis using metabolic modeling. PLoS Comput. Biol. 17, e1008983 (2021).

    1. Article CAS PubMed PubMed Central Google Scholar

  50. Schindler, D. W. et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc. Natl Acad. Sci. USA 105, 11254–11258 (2008).

    1. Article CAS PubMed PubMed Central Google Scholar

  51. Inomura, K., Bragg, J. & Follows, M. J. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 11, 166–175 (2017).

    1. Article CAS PubMed Google Scholar

  52. Resendis-Antonio, O., Reed, J. L., Encarnación, S., Collado-Vides, J. & Palsson, B. Ø.Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput. Biol. 3, e192 (2007).

    1. Article PubMed PubMed Central Google Scholar

  53. Rhee, G.-Y. & Gotham, I. J. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26, 635–648 (1981).

    1. Article CAS Google Scholar

  54. Finkel, Z. V. et al. Phylogenetic diversity in the macromolecular composition of microalgae. PLoS ONE 11, e0155977 (2016).

    1. Article PubMed PubMed Central Google Scholar

  55. Phillips, K. N., Godwin, C. M. & Cotner, J. B. The effects of nutrient imbalances and temperature on the biomass stoichiometry of freshwater bacteria. Front. Microbiol. 8, 1692 (2017).

    1. Article PubMed PubMed Central Google Scholar

  56. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    1. Article CAS PubMed PubMed Central Google Scholar

  57. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007).

    1. Article PubMed PubMed Central Google Scholar

  58. Mahadevan, R., Edwards, J. S. & Doyle, F. J. 3rd Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

    1. Article CAS PubMed PubMed Central Google Scholar

  59. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, 2006).

  60. Segel, L. A. & Slemrod, M. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989).

    1. Article Google Scholar

  61. Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).

    1. Article CAS PubMed PubMed Central Google Scholar

  62. Salimi, F., Zhuang, K. & Mahadevan, R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 5, 726–738 (2010).

    1. Article CAS PubMed Google Scholar

  63. Casey, J. R. et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci. Adv. 8, eabl4930 (2022).

    1. Article CAS PubMed PubMed Central Google Scholar

  64. Régimbeau, A. et al. Contribution of genome-scale metabolic modelling to niche theory. Ecol. Lett. 25, 1352–1364 (2022).

    1. Article PubMed PubMed Central Google Scholar

  65. Régimbeau, A. et al. Towards modeling genome-scale knowledge in the global ocean. Preprint at bioRxiv https://doi.org/10.1101/2023.11.23.568447 (2023).

  66. Kiørboe, T. A Mechanistic Approach to Plankton Ecology (Princeton Univ. Press, 2008).

  67. Michaelis, L. & Menten, M. I. Die kinetik der invirtinwirkung. Biochem. Z. 49, 333–369 (1913).

    1. CAS Google Scholar

  68. Monod, J. The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949).

    1. Article CAS Google Scholar

  69. Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).

    1. Article Google Scholar

  70. Real, L. A. The kinetics of functional response. Am. Nat. 111, 289–300 (1977).

    1. Article Google Scholar

  71. McNickle, G. G. & Brown, J. S. When Michaelis and Menten met Holling: towards a mechanistic theory of plant nutrient foraging behaviour. AoB Plants 6, plu066 (2014).

    1. Article PubMed PubMed Central Google Scholar

  72. Gavis, J. Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth. J. Mar. Res. 34, 161–179 (1976).

    1. Google Scholar

  73. Cornish-Bowden, A. Fundamentals of Enzyme Kinetics 4th edn (Wiley-Blackwell, 2012).

  74. Han, B.-P. Photosynthesis–irradiance response at physiological level: a mechanistic model. J. Theor. Biol. 213, 121–127 (2001).

    1. Article CAS PubMed Google Scholar

  75. Liu, Y. Overview of some theoretical approaches for derivation of the Monod equation. Appl. Microbiol. Biotechnol. 73, 1241–1250 (2007).

    1. Article CAS PubMed Google Scholar

  76. Stefan, M. I. & Le Novère, N. Cooperative binding. PLoS Comput. Biol. 9, e1003106 (2013).

    1. Article CAS PubMed PubMed Central Google Scholar

  77. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 (1997).

    1. Article CAS PubMed Google Scholar

  78. Hill, A. V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii (1910).

    1. Google Scholar

  79. Holling, C. S. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98, 5–86 (2012).

    1. Article Google Scholar

  80. Kalinkat, G., Rall, B. C., Uiterwaal, S. F. & Uszko, W. Empirical evidence of type III functional responses and why it remains rare. Front. Ecol. Evol. 11, 1033818 (2023).

    1. Article Google Scholar

  81. Armstrong McKay, D. I., Cornell, S. E., Richardson, K. & Rockström, J. Resolving ecological feedbacks on the ocean carbon sink in Earth system models. Earth Syst. Dyn. 12, 797–818 (2021).

    1. Article Google Scholar

  82. Moore, J. K., Doney, S. C. & Lindsay, K.Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Glob. Biogeochem. Cycle 18, GB4028 (2004).

    1. Article Google Scholar

  83. Wu, Z. et al. Modeling photosynthesis and exudation in subtropical oceans. Glob. Biogeochem. Cycle 35, e2021GB006941 (2021).

    1. Article CAS Google Scholar

  84. Geider, R. J., MacIntyre, H. L. & Kana, T. M. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187–200 (1997).

    1. Article Google Scholar

  85. Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).

    1. Article CAS PubMed Google Scholar

  86. Westermark, S. & Steuer, R. Toward multiscale models of cyanobacterial growth: a modular approach. Front. Bioeng. Biotechnol. 4, 95 (2016).

    1. Article PubMed PubMed Central Google Scholar

  87. Bruggeman, J. & Bolding, K. A general framework for aquatic biogeochemical models. Environ. Model. Softw. 61, 249–265 (2014).

    1. Article Google Scholar

  88. Agmon, E. et al. Vivarium: an interface and engine for integrative multiscale modeling in computational biology. Bioinformatics 38, 1972–1979 (2022).

    1. Article CAS PubMed PubMed Central Google Scholar

  89. Zavřel, T. et al. Quantitative insights into the cyanobacterial cell economy. eLife 8, e42508 (2019).

    1. Article PubMed PubMed Central Google Scholar

  90. Machado, D. & Herrgård, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10, e1003580 (2014).

    1. Article PubMed PubMed Central Google Scholar

  91. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    1. Article CAS PubMed Google Scholar

  92. Reznik, E. et al. Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity. Cell Rep. 20, 2666–2677 (2017).

    1. Article CAS PubMed PubMed Central Google Scholar

  93. Kümmel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network‐embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).

    1. Article PubMed PubMed Central Google Scholar

  94. Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).

    1. Article CAS PubMed PubMed Central Google Scholar

  95. Meiler, S. et al. Constraining uncertainties of diazotroph biogeography from nifH gene abundance. Limnol. Oceanogr. 67, 816–829 (2022).

    1. Article Google Scholar

  96. Zehr, J. P. & Riemann, L. Quantification of gene copy numbers is valuable in marine microbial ecology: a comment to Meiler et al. (2022). Limnol. Oceanogr. 68, 1406–1412 (2023).

    1. Article Google Scholar

  97. Meiler, S., Britten, G. L., Dutkiewicz, S., Moisander, P. H. & Follows, M. J. Challenges and opportunities in connecting gene count observations with ocean biogeochemical models: reply to Zehr and Riemann (2023). Limnol. Oceanogr. 68, 1413–1416 (2023).

    1. Article Google Scholar

  98. Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    1. Article CAS PubMed PubMed Central Google Scholar

  99. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    1. Article CAS PubMed Google Scholar

  100. Zhao, Q., Stettner, A. I., Reznik, E., Paschalidis, I. C. & Segrè, D. Mapping the landscape of metabolic goals of a cell. Genome Biol. 17, 109 (2016).

    1. Article PubMed PubMed Central Google Scholar

  101. Harcombe, W. R., Delaney, N. F., Leiby, N., Klitgord, N. & Marx, C. J. The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput. Biol. 9, e1003091 (2013).

    1. Article CAS PubMed PubMed Central Google Scholar

  102. Boon, E. et al. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol. Rev. 38, 90–118 (2014).

    1. Article CAS PubMed Google Scholar

  103. Morris, J. J., Lenski, R. E. & Zinser, E. R.The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    1. Article PubMed PubMed Central Google Scholar

  104. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    1. Article CAS PubMed PubMed Central Google Scholar

  105. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat. Commun. 8, 1563 (2017).

    1. Article PubMed PubMed Central Google Scholar

  106. Kleidon, A., Malhi, Y. & Cox, P. M. Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B Biol. Sci. 365, 1297–1302 (2010).

    1. Article Google Scholar

  107. Vallino, J. J. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Phil. Trans. R. Soc. B Biol. Sci. 365, 1417–1427 (2010).

    1. Article CAS Google Scholar

  108. Goldenfeld, N. & Woese, C. Life is physics: evolution as a collective phenomenon far from equilibrium. Annu. Rev. Condens. Matter Phys. 2, 375–399 (2011).

    1. Article CAS Google Scholar

  109. Barve, A. & Wagner, A. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature 500, 203–206 (2013).

    1. Article CAS PubMed Google Scholar

  110. Yizhak, K., Tuller, T., Papp, B. & Ruppin, E. Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol. Syst. Biol. 7, 479 (2011).

    1. Article PubMed PubMed Central Google Scholar

  111. Handorf, T., Ebenhöh, O. & Heinrich, R. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498–512 (2005).

    1. Article CAS PubMed Google Scholar

  112. Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).

    1. Article CAS PubMed Google Scholar

  113. Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e9 (2017).

    1. Article CAS PubMed Google Scholar

  114. Goldford, J. E., Hartman, H., Marsland, R. & Segrè, D. Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism. Nat. Ecol. Evol. 3, 1715–1724 (2019).

    1. Article PubMed PubMed Central Google Scholar

  115. Xavier, J. C. et al. The metabolic network of the last bacterial common ancestor. Commun. Biol. 4, 413 (2021).

    1. Article CAS PubMed PubMed Central Google Scholar

  116. Chu, X. Y. et al. Plausibility of early life in a relatively wide temperature range: clues from simulated metabolic network expansion.Life (Basel) 11, 738 (2021).

    1. PubMed Google Scholar

  117. Kim, H., Smith, H. B., Mathis, C., Raymond, J. & Walker, S. I. Universal scaling across biochemical networks on Earth. Sci. Adv. 5, eaau0149 (2019).

    1. Article PubMed PubMed Central Google Scholar

  118. Zoccarato, L., Sher, D., Miki, T., Segrè, D. & Grossart, H.-P. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun. Biol. 5, 276 (2022).

    1. Article CAS PubMed PubMed Central Google Scholar

  119. De Vargas Roditi, L., Boyle, K. E. & Xavier, J. B. Multilevel selection analysis of a microbial social trait. Mol. Syst. Biol. 9, 684 (2013).

    1. Article PubMed PubMed Central Google Scholar

  120. Damore, J. A. & Gore, J. Understanding microbial cooperation. J. Theor. Biol. 299, 31–41 (2012).

    1. Article PubMed Google Scholar

  121. Harrington, K. I. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).

    1. Article PubMed PubMed Central Google Scholar

  122. Dundore-Arias, J. P., Michalska-Smith, M., Millican, M. & Kinkel, L. L. More than the sum of its parts: unlocking the power of network structure for understanding organization and function in microbiomes. Annu. Rev. Phytopathol. 61, 403–423 (2023).

    1. Article CAS PubMed Google Scholar

  123. West, G. B., Woodruff, W. H. & Brown, J. H. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Natl Acad. Sci. USA 99, 2473–2478 (2002).

    1. Article PubMed PubMed Central Google Scholar

  124. Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).

    1. Article CAS PubMed Google Scholar

  125. Gardner, J. J. & Boyle, N. R.The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. BMC Syst. Biol. 11, 4 (2017).

    1. Article PubMed PubMed Central Google Scholar

  126. Epstein, J. M. Why model? J. Artif. Soc. Soc. Simul. 11, 12 (2008).

    1. Google Scholar

  127. Liefer, J. D. et al. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).

    1. Article PubMed PubMed Central Google Scholar

  128. Zaguri, M., Kandel, S., Rinehart, S. A., Torsekar, V. R. & Hawlena, D. Protein quantification in ecological studies: a literature review and empirical comparisons of standard methodologies. Methods Ecol. Evol. 12, 1240–1251 (2021).

    1. Article Google Scholar

  129. Omta, A. W. et al. Quantifying nutrient throughput and DOM production by algae in continuous culture. J. Theor. Biol. 494, 110214 (2020).

    1. Article CAS PubMed Google Scholar

  130. Çakır, T. et al. Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnol. Progr. 23, 320–326 (2007).

    1. Article Google Scholar

  131. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    1. Article PubMed PubMed Central Google Scholar

  132. Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).

    1. Article CAS Google Scholar

  133. Fiksen, O., Follows, M. & Aksnes, D. L. Trait based models of nutrient uptake in microbes extend the michaelis menten framework. Limnol. Oceanogr. 58, 193–202 (2013).

    1. Article Google Scholar

  134. Grossowicz, M. et al. Prochlorococcus in the lab and in silico: the importance of representing exudation. Limnol. Oceanogr. 62, 818–835 (2017).

    1. Article Google Scholar

  135. Omta, A. W. et al. Extracting phytoplankton physiological traits from batch and chemostat culture data. Limnol. Oceanogr. Methods 15, 453–466 (2017).

    1. Article Google Scholar

Download references

Acknowledgements

We thank R. Braakman, J. Casey, S. Ben Tabou de Leon and O. Weissberg for critical reading of the manuscript. The joint work of the research groups of D. Sher, D. Segrè and M.J.F. was supported by the Gordon and Betty Moore Foundation (grant number GBMF #3778 to M.J.F.), Human Frontier Science Program (grant number RGP0020/2016 to D. Sher and D. Segrè), United States–Israel Binational Science Foundation (grant number 2010183 to D. Sher and M.J.F.), Israel Science Foundation (grant number 1786/20 to D. Sher) and National Science Foundation/United States–Israel Binational Science Foundation (NSFOCE-BSF 1635070 and NSF-BSF 2246707 to D. Segrè and D. Sher). M.J.F. is also grateful for support from the Simons Foundation (CBIOMES; grant number 549931 to M.J.F.). D. Segrè was also supported by the National Science Foundation Center for Chemical Currencies of a Microbial Planet (C-CoMP publication #047 ), National Institutes of Health (National Institute on Aging (award number UH2AG064704) and National Cancer Institute (grant number R21CA279630)) and US Department of Energy, Office of Science, Office of Biological and Environmental Research through the Microbial Community Analysis and Functional Evaluation in Soils (m-CAFEs) Science Focus Area Program under contract number DE-AC02-05CH11231 to the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

  1. Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel

    1. Daniel Sher

  2. Department of Biology, Boston University, Boston, MA, USA

    1. Daniel Segrè

  3. Biological Design Center, Boston University, Boston, MA, USA

    1. Daniel Segrè

  4. Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA

    1. Daniel Segrè

  5. Department of Physics, Boston University, Boston, MA, USA

    1. Daniel Segrè

  6. Department of Biomedical Engineering, Boston University, Boston, MA, USA

    1. Daniel Segrè

  7. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    1. Michael J. Follows

Contributions

All of the authors contributed equally to all aspects of this article.

Corresponding authors

Correspondence to Daniel Sher, Daniel Segrè or Michael J. Follows.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks T. Thingstad and Ralf Steuer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature またはそのライセンサー (学会またはその他のパートナーなど) は、著者またはその他の権利保有者との出版契約に基づき、本論文に対する独占的権利を保有します。本論文の受理された原稿版の著者による自己アーカイブ化は、かかる出版契約の条件および適用法によってのみ規制されます。

転載と許可

この記事について

この記事を引用する

Sher, D., Segrè, D. & Follows, MJ スケールを超えて共有される微生物代謝の定量的原理。Nat Microbiol 9、1940–1953(2024)。https://doi.org/10.1038/s41564-024-01764-0

引用をダウンロード

  • 受け取った2023年6月24日

  • 承認済み2024年6月18日

  • 公開済み2024年8月6日

  • 発行日2024年8月

  • 掲載日https://doi.org/10.1038/s41564-024-01764-0

科目

自然微生物学 ( Nat Microbiol ) ISSN 2058-5276(オンライン)

nature.com サイトマップ

ネイチャーポートフォリオについて

コンテンツを発見

出版ポリシー

著者および研究者向けサービス

図書館・機関

広告とパートナーシップ

専門能力開発

地域ウェブサイト

© 2024 シュプリンガー・ネイチャー・リミテッド

この記事が気に入ったらサポートをしてみませんか?