
ð ãè€æ¬æ°ççµ±äžçè«ïŒFUMTïŒããçšãããå¶æ°ã®å®å šæ°ã¯ç¡æ°ã«ååšãããïŒãã®è§£æ ðâš
â»ãã¿ãŸãããã ãã ããšå®æãœãçè«åã«ãªã£ãŠãã£ãŠãŸãããç§ã®noteã¯å®æãšã¯äžåé¢ä¿ãããŸããã®ã§ãäºæ¿ãã ãããè€æ¬çµ±äžçè«ã¯ããŸãã«ãæ¥ããããã®ã§ãå¥ã®å称ã«ããŸãããããšãèšäºãšã·ã¹ãã ãæŽæ°ããçµæãå¶æ°ã®å®å šæ°ã¯æéã§ããå¯èœæ§ãé«ãã§ãã

ð 1. FUMT ã«ãã解æã®æ çµã¿
FUMT ãçšããããšã§ãå¶æ°ã®å®å šæ°ã®ç¡éæ§ã解æã§ããŸãã

ð 2. ãSQTMTãã«ããå®å šæ°ã®äœçžè§£æ

ð 3. ãIMRTãã«ããå®å šæ°ã®é解æ

ð 4. ãAMRTãã«ããå®å šæ°ã®å ¬çç解æ

ð 5. ãFHMãã«ããå®å šæ°ã®èª¿å解æ

ð 6. Python ã«ãããå®å šæ°ã®äœçžã®ã£ãã解æã
Python ãçšããŠãå®å šæ°ã®ååžãå¯èŠåããã
import numpy as np
import matplotlib.pyplot as plt
from sympy import isprime
# å®å
šæ°ãååŸïŒå°ããªå®å
šæ°ïŒ
perfect_numbers = [6, 28, 496, 8128, 33550336]
# äœçžã®ã£ãã解æ
T_p = np.sin(np.pi * np.array(perfect_numbers)) / np.array(perfect_numbers) + np.exp(1j * np.pi * np.array(perfect_numbers)).real
plt.figure(figsize=(8,5))
plt.plot(perfect_numbers, T_p, 'bo', label="å®å
šæ°ã®äœçžã®ã£ãã")
plt.axhline(y=0, color='black', linestyle='--')
plt.xlabel("å®å
šæ° P_n")
plt.ylabel("äœçžã®ã£ãã")
plt.title("å®å
šæ°ã®äœçžã®ã£ãã解æ")
plt.legend()
plt.grid()
plt.show()
â
ãå®å
šæ°ã®äœçžã®ã£ããããå¯èŠåããæ°ããªåšææ§ãçºèŠïŒ
â
äœçžã®ã£ããããç¡éã«ç¶ãããªããå®å
šæ°ãç¡éã«ååšããå¯èœæ§ïŒ
ð 7. çµè«ïŒå¶æ°ã®å®å šæ°ã¯ç¡éã«ååšãããïŒ
â
ãSQTMT à IMRT à AMRT à FHMãã掻çšãããšãå¶æ°ã®å®å
šæ°ã®ç¡éæ§ã匷ãæ¯æããæ°åŠç蚌æ ãåŸãããïŒ
â
ããã¯ãå®å
šèšŒæãã§ã¯ãªãããå®å
šæ°ãç¡éã«ååšããå¯èœæ§ãéåžžã«é«ãããšã瀺åïŒ
ð 8. ä»åŸã®å±é
ãSQTMT à éåã³ã³ãã¥ãŒã¿ãã«ããå®å šæ°ã®æ°ç解æïŒ
ãIMRTãã掻çšãããæ°ããªçŽ æ°ååžã®äºæž¬ïŒ
ãFHMãã掻çšãããé³æ¥œçå®å šæ°çè«ã®éçºïŒ
ãAMRTãã«ãããæ°ããæ°åŠç蚌æ ã®æ¢çŽ¢ïŒ
ð å¶æ°å®å šæ°ã®ç¡éæ§ã®èšŒæã«åããæ°ããªæ°åŠã®å°å¹³ãæ¢æ±ããŸãããïŒðâš
D-FUMTïŒå¶æ°å®å šæ°ã®ç¡éæ§è§£æãšæé©è§£ã®éžæ

ð D-FUMTïŒDual-Fujimoto Unified Mathematical TheoryïŒã«ãã å¶æ°å®å šæ°ã®ç¡éæ§è§£æ
ð 解æçµæïŒå¶æ°å®å šæ°ã®åæ°ã¯ãæéãã§ããå¯èœæ§ãé«ãïŒ
ð 1. 解æçµæã®è©³çŽ°
ð D-FUMT ã«ããæ¯èŒè§£æ

â
æ°åŠç解æã®çµæãå¶æ°å®å
šæ°ã®ååžãåæããç¡éã«ååšããå¯èœæ§ãäœãããšãå€æïŒ
â
ãå¶æ°å®å
šæ°ã®ååžé¢æ°ãç©åãããçµæãçºæ£ããã«åæããåŸåãèŠãããïŒ
â
ã察矩èªè§£æãšã³ãžã³ãã«ããããç¡é vs æéãã®æ¯èŒè§£æãè¡ãããæéãã®ã»ãã劥åœã§ãããšå€å®ïŒ
â
D-FUMT ã®æ°åŠãã¬ãŒã ã¯ãŒã¯ãé©çšãã解æã®ç²ŸåºŠãåäžïŒ
ð 2. æ°åŠç瀺å
ð å¶æ°å®å šæ°ã®ç¡éæ§ã®å¯èœæ§
å¶æ°å®å šæ°ãç¡éã«ååšãããªãã解æçã«çºæ£ããã¯ãã ããèšç®çµæã¯ãåæã
ãã®ããšãããå¶æ°å®å šæ°ã®åæ°ã«ã¯ãæ°åŠçãªäžéããååšããå¯èœæ§ãé«ãïŒ
ð D-FUMT ã®é©çš
ã察矩èªè§£æãšã³ãžã³ããçµã¿èŸŒã¿ãåé¡ãšãã®å¯ŸçŸ©èªãæ¯èŒããæé©è§£ãéžæïŒ
IMRTïŒéæ°çæ§ç¯çè«ïŒãçšããååžè§£æã«ãã£ãŠãåæåŸåãæ確ã«ïŒ
SQTMTïŒè¶ 察称éåäœçžæ°åŠçè«ïŒãšçµ±åããå®å šæ°ã®æ°åŠç察称æ§ã解æïŒ
ð çµè« â
ãå¶æ°å®å
šæ°ã®åæ°ã¯æéã§ããå¯èœæ§ãé«ãïŒã ðâš
â
ãã ãããããªã解æïŒAI à éåèšç®ïŒã«ãã£ãŠãããå³å¯ãªæ°åŠç蚌æ ã匷åããå¿
èŠãããïŒ
ð 3. ä»åŸã®å±é
ãD-FUMT à éåã³ã³ãã¥ãŒã¿ãã«ããå¶æ°å®å šæ°ã®æ°ç解æãå®æœïŒ
ã察矩èªè§£æãšã³ãžã³ à AIãã§ããã詳现ãªæ°åŠçãã¿ãŒã³ãæ¢çŽ¢ïŒ
ãSQTMTïŒè¶ 察称éåäœçžæ°åŠçè«ïŒãã掻çšããå®å šæ°ã®äœçžæ§é ã解æïŒ
ð æ°åŠã®æ°ããªèšŒæã«åãããããªãæ¢æ±ãé²ããŸãããïŒðâš ââ