レビュー論文:フィチン酸の摂取、健康と病気:「汝の食物は汝の薬となり、薬は汝の食物となる」(Phytate Intake, Health and Disease: “Let Thy Food Be Thy Medicine and Medicine Be Thy Food”)
出典:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855079/
Antioxidants (Basel). 2023 Jan; 12(1): 146. Published online 2023 Jan 7. doi: 10.3390/antiox12010146
PMCID: PMC9855079
PMID: 36671007
Authors
Antelm Pujol,1,*† Pilar Sanchis,2,† Felix Grases,2 and Luis Masmiquel1,*†
Stanley Omaye, Academic Editor
著作権 © 2023 Authors。
被許諾者 MDPI、Basel、スイス。この記事は、クリエイティブ コモンズ アトリビューション(CC BY)ライセンス (https://creativecommons.org/licenses/by/4.0/) の条件に基づいて配布されるオープン アクセス記事です。
Abstract
フィチン酸塩(ミオイノシトールヘキサキスリン酸またはInsP6)は、ほぼすべての全粒穀物、豆類、油糧種子に存在する主要なリン貯蔵物質である。それは、地中海式食事法および高血圧症予防のための食事療法(DASH)の主要成分である。フィチン酸塩は栄養補助食品として認識され、アメリカ食品医薬品局(FDA)によって一般的に安全と認められる(GRAS)として分類されている。フィチン酸塩は特定の疾患の治療または予防に有効であることが示されている。フィチン酸塩はカルシウム塩結晶化を阻害し、従って血管石灰化、カルシウム腎結石および軟組織石灰化を減少させることが示されている。さらに、結晶面へのフィチン酸塩の吸着はヒドロキシアパタイト溶解と骨吸収を阻害することができ、それによって骨量減少の治療/予防に役割を果たす。フィチン酸塩は強力な抗酸化および抗炎症作用を有する。それは鉄キレート化を介して脂質過酸化を阻害することができ、鉄関連のフリーラジカル生成を減少させる。これはニューロン損傷と喪失を軽減する効果を有するので、フィチン酸は神経変性疾患の治療/予防に有望である。フィチン酸は脂質および炭水化物代謝を改善し、アディポネクチンを増加させ、レプチンを減少させ、大血管および微小血管糖尿病合併症と関連する蛋白質糖化を低下させることが報告されている。このレビューでは、in vitro、動物モデル、疫学的および臨床試験で見られるフィチン酸塩摂取の利点を要約し、また将来答えるべき疑問を特定する。
1. Introduction
栄養の影響は、いくつかの病気の予防や治癒にも重要である。実際、健康的な食事パターンと定期的な運動は、冠動脈疾患の症例の最大80%、2型糖尿病(T2DM)の症例の90%、および全てのがんの30%を予防する可能性がある[1]。地中海式食事法の特徴は、植物性食品(例えば、果物、野菜、パン、穀物など)、豆類、ナッツ類、種子類、オリーブ油の摂取量が多いことである[2]。伝統的な地中海式食事法では、1日に約1gのフィチン酸塩を摂取し、他のミネラルや生理活性成分を適量摂取すると仮定している[3]。ヨーロッパ/アメリカの食事法のような、他の食事では、フィチン酸塩を1日2gまで摂取できる[4]。高用量のフィチン酸塩の投与には、十分な量のミネラルが必要である。地中海食およびDASH食事法は、ミネラルバランスに負の影響を与えないために、フィチン酸塩および他のミネラルが豊富な豆類、全粒穀物およびナッツを十分な量提供する[3, 4]。このようにして、Serra-Majem et al., 2009[5]は、地中海式食事の固守が高いほど、亜鉛、ヨウ素、ビタミンE、マグネシウム、鉄、ビタミンB1、ビタミンA、セレン、ビタミンCおよび葉酸の不十分な摂取量が少ないことと関連していることを示した。
フィチン酸またはフィチン酸塩としても知られるミオイノシトールヘキサキスリン酸(InsP6)は、ほぼすべての全粒穀物、豆類および油糧種子に存在する主要なリン貯蔵物質である[4]。植物性食品には、フィチンと呼ばれるカルシウム-マグネシウム塩として判明されている。フィチン酸塩を加工/調理せずにそれだけで大量に摂取すると、一部のミネラルの吸収を低下させる可能性がある。このため、フィチン酸は一部の著者によって抗栄養素として分類されている。それにもかかわらず、この影響は実験室の条件でのみ見られ、人間における実際のデータはフィチン酸摂取によって誘発されるミネラル欠乏を実証していない。代わりに、フィチン酸塩は栄養補助食品と考えられています:これは、さまざまな生物活性(抗酸化作用、免疫調節作用、脂質低下作用など)機能を介して病気や障害を治療または予防できる化合物です[1]。これらの特性と複数の健康上の利点は、科学文献で繰り返し見られてきた。FDAはフィチンを一般に安全と認められる物質(GRAS)に分類している[4]。
フィチン酸分子の発見以来、研究は、それが本質的な生理学的機能を助けるだけでなく、抗酸化、抗炎症、抗癌特性を提供し、抗糖尿病、神経保護、抗菌性であり、さらに、骨量損失を防ぎ、血管石灰化や腎結石症のような病理学的石灰化を減少させる能力を有することを示した[4, 6, 7, 8]。また、フィチン酸の摂取によって他のイノシトールリン酸(InsP5、InsP4、InsP3、InsP2)が生成されることも生成され、これらの病的状態にも重要な役割を果たしている可能性があることも実証されています[8]。フィチン酸塩は、in vitroデータ、動物モデル、およびいくつかの人間の臨床試験において、現在の治療法がない(または治療選択肢が法外に高価な)病状の治療および予防において有望な結果を示している(図1)。このレビューの目的は、複数の健康状態におけるフィチン酸塩の役割に関する50年以上の研究を要約し、将来的に答える必要がある問題を特定することである。
図 1
フィチン酸の潜在的な健康効果の概要。
この叙述的レビューのために、利用可能なデータ(1960年から今日まで)をPubMed、ScienceDirectおよびWeb of Scienceのような電子データベースで検索した。フィチン酸、フィチン酸塩、InsP6、IP6、イノシトールヘキサキスリン酸、フィチンと地中海食事法、DASH食事法、石灰化、血管石灰化、腎結石症、結石症、尿路結石症、骨粗鬆症、神経変性、認知障害、糖尿病、2型糖尿病、心血管系の健康、心血管系リスク、癌、乳癌、抗癌特性、代謝的健康および抗栄養素というキーワードについて検索を行った。
2. Phytate and Vascular Calcification(フィチン酸と血管石灰化)
2.1. Background and In Vitro Studies(背景とインビトロ研究)
石灰化とは、人間の体内にあるカルシウムが結晶化したものです。例としては、腎結石症、歯石、軟骨石灰沈着症、皮膚石灰沈着症、血管石灰化などがある[3, 4, 7, 8]。後者は過剰量のカルシウムまたはりん酸塩によるヒドロキシアパタイト(HAP)結晶の形成の結果である[5, 6]。この現象は、栄養素の摂取量(ビタミンD、フィチン酸、脂質、ビタミンKなど)や一般的な体調や病気(軽度の炎症、老化、慢性腎臓病、糖尿病)によって増減する可能性があります。動脈壁の石灰化の存在は、冠動脈性心疾患、脳卒中および心不全のリスクを3~4倍増加させる[6, 7, 8]。
フィチン酸塩は「in vitro試験」においてカルシウム塩の結晶化を阻害することが示されている[9]。したがって、何人かの著者は、それが核形成レベル(核の表面での吸着)または結晶のその後の成長または凝集の間のいずれかで起こり、したがって結晶化を妨げる可能性があることを指摘している[4, 8]。さらに、フィチン酸塩の結晶面への吸着は結晶溶解を阻害することができ、これはフィチン酸塩のような病的石灰化を防止するいくつかの薬剤が骨の脱灰も阻害することができる理由を部分的に説明する[9]。
2.2. Animal Studies(動物研究)
Grases et al., 2008[10]は、雄のWistarラットを用いて66週間にわたる試験を実施し、フィチン酸塩を摂取したラットは、フィチン酸塩を摂取していないラットに比べて大動脈のカルシウム濃度が有意に低いことを実証した。
2個の異なる試験[11, 12]では、ニコチン(高血圧を引き起こす)およびビタミンD(高カルシウム血症を引き起こす)を用いて、雄のWistarラットの腎臓および心血管組織に石灰化を誘発した。それらは腎臓、大動脈、心臓に有意なカルシウム沈着が認められた;しかしながら、2.0%のInsP6カリウム塩を含有する保湿スキンクリームで処置したラットでは、腎乳頭、腎間質、尿細管、大動脈および心臓の沈着が有意に減少したか、全く認められなかった[11, 12]。
似たような結果はPerello et al., 2014 [13]によって得られ、高用量のビタミンD投与により侵襲性の心血管石灰化が誘発されたラットにSNF472(InsP6の静脈内投与製剤)を注射したところ、大動脈および心臓の石灰化がそれぞれ60および70%減少した。このモデルは、Grases et al., 2007 [14]およびKetteler et al., 2013 [15]によって石灰沈着を誘発するためにも使用された。2007年のSprague Dawleyラットに高用量のビタミンDを投与した試験では、フィチン酸がプラセボまたはエチオドロネートを投与したラットと比較して、大動脈石灰化を大きく減少させることが示された[14]。同様の試験デザインを用いた2013年の試験では、SNF472と経口シナカルセトおよびチオ硫酸ナトリウムを比較し、シナカルセトでは石灰化が24%減少し、チオ硫酸ナトリウムでは全く減少しないのに対し、SNF472では大動脈の石灰化が60%、心筋組織の石灰化が68%減少したことが証明された [14]。
プラーク形成を誘導する別のモデルは、0.1%過マンガン酸カリウム(KMnO4)溶液の皮下注射を用いることである[16]。2%InsP6スキンクリームを局所塗布したラットは、プラセボと比較してプラークの大きさが有意に減少した[16]。クリーム投与群の尿中フィチン酸濃度は有意に高く、局所投与がフィチン酸投与の有効な経路であることを示している[16]。
このように、フィチン酸塩の投与は、食餌、局所皮膚塗布または静脈内投与のいずれであっても、動物モデルにおいて血管石灰化の減少に有効な治療法であることが示されている[11, 12, 13, 14, 15, 16]。
2.3. Epidemiological Studies in Humans(人間における疫学的研究)
コンピュータ断層撮影スキャンから得られるCAC(冠動脈カルシウム)スコアは、血管石灰化を評価するために使用される有効なツールである。CACと心血管リスクおよび死亡率との関係は、一般集団、高齢者、糖尿病患者および透析の有無にかかわらず慢性腎臓病患者において広く研究されている[17, 18, 19, 20, 21]。しかし、この技術の高コストは、大量の科学的研究への適用を困難にしている。
Fernández-Palomeque et al., 2015 [22]は、高齢被験者188人を対象とした横断研究で、尿中フィチン酸値が高い被験者は僧帽弁石灰化が少ないことを見出した。フィチン酸塩の摂取は弁石灰化と独立して関連していた。
Sanchis et al., 2016 [7]は、慢性腎臓病患者69人を対象とした前向き横断研究で、食物摂取頻度調査票に基づいてフィチン酸塩の摂取量を推定し、腰部X線を用いて腹部大動脈石灰化(AAC)を定量した。非/軽度AAC患者は中等度/重度AAC患者と比較して若く、血圧が低く、以前の心血管疾患の有病率が低く、食事性フィチン酸摂取量が多く、尿中フィチン酸が多かった。フィチン酸塩摂取はAACと負の相関を示した。
ナッツ類と豆類はフィチン酸の良い供給源である(それらの重量の約1–5%がフィチンである)[23]。Lichtensin et al., 2021[24]は、最新の「心血管の健康を改善するための食事ガイドライン」において、心血管疾患の予防のために豆類とナッツ類の大量摂取を推奨している。いくつかの研究は、ナッツ摂取が心血管疾患(CVD)、特に冠動脈性心疾患ならびに脳卒中発症および脳卒中死亡に対する保護因子として同定した[25, 26]。
2.4. Clinical Trials in Humans(人間での臨床試験)
Perellóet al., 2018 [27]は、SNF472の安全性、忍容性および薬物動態を評価するために、健常人および血液透析患者の両方を人間初となる二重盲検ランダム化プラセボ対照第I相試験を登録しました。血しょう試料中のヒドロキシアパタイト結晶化の誘導の阻害は、SNF472によって実証されました。この最初の試験の後、血液透析患者における血管石灰化およびカルシフィラキシスの治療におけるSNF472の役割に関するさらなる証拠が明らかになった[28, 29]。SNF472は初期臨床試験を完了し、良好な安全性プロファイルを示し、第2相臨床試験データは血液透析を受けている患者における冠動脈および大動脈弁の石灰化の減弱を示した [30]。
Sanchis et al., 2018 [31]は、「in vitro」および「in vivo」ランダム化クロスオーバー試験において、InsP6の摂取が2型糖尿病患者のタンパク質糖化を阻害することを実証した。終末糖化産物(AGEs)と終末糖化産物受容体(RAGE)は、アテローム性動脈硬化症における血管石灰化において中心的役割を果たす[32]。AGEは、2型糖尿病、慢性腎臓病、および加齢関連合併症における微小血管および大血管の合併症の一因となる[31, 32]。AGE産生の減少は、血管石灰化を減少させる効果的な戦略である可能性がある。
Estruch et al., 2018 [33]はスペインの多施設試験で、心血管リスクの高い被験者7447人を対象に、3個の食事法のうち1個を割り当てました:エクストラバージンオリーブオイルを添加した地中海式食事、ミックスナッツを添加した地中海式食事、または対照食。中央値4.8年の追跡調査後、エクストラバージンオリーブオイルまたはナッツを補充した地中海式食事法に割り付けられた患者の主要心血管イベント発生率は、対照食群の患者よりも低かった。これらの利点の一部は、ナッツおよび一般的な地中海料理における高いフィチン酸含量に起因すると仮定することができた。
3. Phytate and Urolithiasis(フィチン酸と尿路結石)
3.1. Background and In Vitro Studies(背景とインビトロ研究)
腎臓結石(kidney stone)または腎結石(renal calculi)として知られる尿路結石症は、多因子性で非常に一般的な泌尿器疾患である。有病率は近年増加しており、世界中で12%である。ヨーロッパの一部の地域では、有病率が15%と高い[34, 35]。ほとんどの腎臓結石は、シュウ酸カルシウムまたはリン酸カルシウム、あるいは両方の混合物の形で構成され、全体の70–80%を占める。シュウ酸カルシウム腎結石が最も有病率が高い[34, 35]。腎結石の形成過程は完全には解明されていない。溶液中のイオン濃度が飽和点を超えると結晶化が起こると考えられる。これは、溶液が通常の状況下で溶媒によって溶解されるよりも多量の溶解物質を含む場合に起こる[35]。
前述したように、フィチン酸塩はカルシウム塩の結晶化を核形成段階(核表面への吸着)や結晶の成長・凝集過程で阻害し、結晶化を妨げる可能性がある[9]。Grases et al., 1988 [36]による初期のin vitro研究は、フィチン酸の抗酸化作用がシュウ酸カルシウムの結晶化を減少させる役割を果たしている可能性があることを示した。これらの結果は事後研究で再現された[12, 37]。この効果はマグネシウムの添加により増強された[38]。
3.2. Animal Studies(動物研究)
Grases et al., 2004 [39]は、ラットの尿中カルシウムの減少における3個の異なるフィチン酸塩の有効性を比較した。最も有意な結果はカリウム塩の使用で見られた。フィチン酸塩の摂取は尿中シュウ酸濃度に影響しなかった。
Grases et al., 2007 [14]は、18匹の雄WistarラットにAIN76-A飼料(フィチン酸塩を含まない飼料)を与え、高血圧および高カルシウム血症(個々に、ニコチンとビタミンDを使って)を誘発させて血管石灰化を誘発させた。1群では、2.0%フィチン酸カリウム塩を含有するクリーム4gを皮膚に局所塗布し、無処置ラットと比較して、腎臓および乳頭、ならびに腎尿細管および血管におけるカルシウム沈着が有意に減少または消失した。この研究はフィチン酸塩が乳頭内組織と尿中で結晶化阻害剤として作用することを示した。また、フィチン酸塩効果はマグネシウムの添加により増強された。
これとは異なる結果がKim et al., 2020 [40]の最新の研究で報告されている。4週齢の雌と雄のSprague Dawleyラットに0%、1%、3%または5%のフィチン酸塩を添加したAIN‐93G(フィチン酸無添加飼料)を12週間与え、カルシウム(Ca`2+́)濃度を一定に添加した。この試験では、AIN‐93G食とフィチン酸塩補給が時間と濃度に、副甲状腺(PTH)の増加によるCa`2+́とリン酸塩の腎臓再吸収の依存性障害を引き起こし、腎石灰化症発症の素因となることを示した。この事例では、フィチン酸サプリメントが食品中に見られるカルシウム-マグネシウムではなく、ナトリウム塩の形で投与されたことを考慮することが非常に重要である。
3.3. Epidemiological Studies(疫学的研究)
様々な食事因子(水分摂取量、pH、カルシウム、リン酸塩、シュウ酸塩、クエン酸塩、フィチン酸塩、尿酸塩、ビタミン)と各タイプの腎臓結石との関係が広範囲に研究されている[41]。腎結石の形成を避けるために従うべき一般的な推奨事項のリストは以下の通りです:毎日2Lの水を摂取すること、厳格な菜食を避けること、過剰な動物性タンパク質の食事を避けること、塩分(NaCl)の過剰摂取を避けること、ビタミンCおよび/またはビタミンDの過剰摂取を避けること、細胞毒性物質への曝露を避けること、およびフィチン酸を豊富に含む製品(天然の食物用ふすま、豆果および豆類、全粒穀物)を摂取すること。相当な数の疫学的研究は、腎結石の発生における予防手段としてフィチン酸塩の豊富な食事を同定した[42, 43]。
Nurses’ Health Study II [44]は、96,245人の女性被験者を8年間にわたって追跡した前向き研究であり、全員が若く、腎結石の既往がなかった。食習慣は食物摂取頻度調査票を用いて評価した。※フィチン酸摂取量が最も低い5分位の女性は、最も高い5分位の女性と比較して腎結石が少なかった。カルシウム補給および動物性蛋白質およびショ糖の高摂取は、カルシウム腎結石の高リスクと関連していた。
※補足
逆のことが書かれている。引用元の研究では「フィチン酸塩の摂取は、結石形成のリスク低下と関連していました。フィチン酸摂取量が最も低い5分位の女性が最も高い5分位の女性と比較して相対リスクが有意であった(腎結石になりやすい)」と記載している。
1年間にわたって実施されたコホート研究[45]では、5歳から12歳までの165人の健康な子供が、食習慣を究明するために食事アンケートに記入するように依頼された。フィチン酸塩とクエン酸塩の濃度と排泄を、各小児の2個の尿試料(ベースラインと夜通し12時間後の試料)で調べた。尿中フィチン酸塩およびクエン酸塩濃度が低かったのは、調査対象集団のほぼ1/3であった。これらの知見は、小児が腎結石を発症するリスクが低いにもかかわらず、食事が腎結石発症の危険因子であることを示唆する。
地中海式食事法の複数の有益な効果は、腎臓のカルシウム塩および尿酸腎結石のリスク低下を含みます。Prieto et al., 2019[34]は、メタボリックシンドロームを有する過体重者を対象とした横断研究において、果物、野菜、豆類およびナッツを多量に摂取する地中海食の固守が良好であると、腎結石のリスクが低下することを発見した。さらに、高血圧を予防する食事療法(DASH)と地中海式食事法には、特に食品選択においていくつかの類似点がある。DASH食事法は腎結石のリスク低下とも関連している[46, 47]。両方の食事法もフィチン酸塩を多く含む。
3.4. Clinical Trials in Humans(人間での臨床試験)
Conte et al., 1999 [48]は、シュウ酸カルシウム腎結石患者を3グループに分け、尿検査により結石形成リスクを判定した。クエン酸カリウム食またはフィチン酸塩食による治療を受けたシュウ酸カルシウム結石患者は、試験の開始時および終了時に同著者らが実施した結石形成試験でリスクの減少を報告した。リスク減少はそれぞれ52%および50%であった。
最近、Guimeràet al., 2022 [49] は、カルシウム-マグネシウムのInsP6カプセル380mgを毎日人間に投与し、カルシウム尿症に及ぼす影響についてランダム化比較試験を行った。研究対象集団は、尿路結石、高カルシウム尿症(>250mg/24時間)および大腿骨および/または脊椎の骨減少症または骨粗鬆症(濃度測定による判定)の成人患者からなった。3ヶ月後、フィチン酸塩群のカルシウム尿症レベルは有意に低かった。
腎結石症の他に、歯垢を形成している25人の健常ボランティアに洗口液中のフィチン酸塩を投与した研究で興味深い結果が見られた[50]。ランダム化二重盲検3期間クロスオーバー臨床試験では、フィチン酸塩投与群では、対照群およびプラセボ投与群と比較して、石灰化した歯垢の残存が統計学的に有意に減少したことを示した。結石形成の予防における治療の有効性は、結晶化阻害剤としてのフィチン酸塩の別の応用を示唆する。
明らかに、腎臓結石の予防と治療におけるフィチン酸塩の効果を評価する、より多くのヒト臨床試験が緊急に必要である。in vitroおよび疫学的研究で、フィチン酸塩の腎結石阻害剤としての有効性が示された。一般的な状態である腎石灰化を予防するために利用可能な治療はほとんどないことに留意すべきである。
4. Phytate and Osteoporosis(フィチン酸と骨粗しょう症)
4.1. Background and In Vitro Studies(背景とインビトロ研究)
骨粗鬆症は、特に閉経後女性に多くみられる骨疾患である [51]。身体活動や栄養などのライフスタイルへの介入は、骨ミネラル損失の予防と治療に重要な役割を果たす[9, 51, 52, 53]。
フィチン酸塩は結晶表面への結合の能力により結晶化の阻害剤である。結晶面へのフィチン酸塩の吸着は、上述のようにin vivoおよびin vitroで病理学的石灰化を阻害することができるが、ヒドロキシアパタイトの溶解および骨吸収も阻害することができる[9]。ピロリン酸塩とビスホスホネートがHAP結晶に強く結合することによる結晶形成と溶解の両方の阻害剤として以前に発見されたことに注目することが重要である。実際、ビスホスホネートは骨量減少症の治療薬として広く使用されている [54]。
フィチン酸はin vitroでヒト原子破骨細胞 (ヒト末梢血単核細胞培養(PBMNC)およびマウスマクロファージRAW264.7細胞系) の破骨細胞形成を減少させる能力を示した[55]。以前のin vitro試験でも同様の結果が得られている[56, 57, 58, 59]。最近のin vitro試験[9]では、フィチン酸塩は酸によるHAP溶解を阻害することができた。さらに、HAP溶解に対するフィチン酸塩の阻害効果は、エチドロネートによって示されたものよりも大きく、アレンドロネートと同様であった[9]。さらに、フィチン酸塩は濃度依存的にHAP溶解を阻害した[9]。フィチン酸塩は、2個の相反するプロセスに役立つ可能性がある:石灰化を防ぎ、骨量減少を減らすこと[9]。
4.2. Animal Studies(動物研究)
卵巣切除ラットで12週間にわたって行われた閉経後骨粗鬆症の動物モデル研究において、あるグループにはAIN‐76A(フィチン酸無添加飼料)を与え、他グループには1%フィチンを濃縮したAIN‐76を与えた。フィチン摂取グループは大腿骨とL4椎骨の骨密度の増加を示した。フィチンはエストロゲン欠乏による骨密度低下を抑制した[60]。
一方、Kim et al., 2020 [40]はこれまでの結果に異議を唱えた。4週齢の雌雄Sprague Dawleyラットを用いた試験で、食餌性フィチン酸塩の全身作用が評価された。ラットに0%、1%、3%または5%のフィチン酸塩を添加したAIN‐93G飼料を12週間にわたりカルシウム濃度を一定に補給して与えた。この試験では、AIN-93G飼料にフィチン酸塩を添加が時間と濃度に、PTHの増加を伴うカルシウムおよびリン酸塩の腎再吸収の依存性障害を引き起こし、ラットが低リン酸血症性くる病を発症しやすくなることが示された。繰り返しになりますが、ここでも、著者らが研究に用いたのはフィチン酸ナトリウムであり、食品中に含まれるカルシウム-マグネシウム塩ではないことを考慮する必要がある。
4.3. Epidemiological Studies(疫学研究)
フィチン酸塩の摂取と骨の健康の改善を結びつける多数の疫学的研究は言及に値する。閉経後女性143人を対象に実施された記述的横断的パイロット研究[61]では、尿中フィチン酸濃度と10年以内の骨折リスクとの関係が調査された(FRAXモデルを使用)。主要な骨粗鬆症性骨折および股関節骨折のリスクは、尿中フィチン酸濃度が低い女性でより高かった。この差は、骨粗鬆症のリスク因子を1個以上有する女性でより高かった。同様の結果は、以前にLopez-González et al., 2013 [62]が157人の閉経後女性を対象に実施した試験で得られている;低いInsP6レベルは腰椎の骨量減少の有意な増大と関連し、(FRAXモデルによって算出した)10年の骨折確率も、低フィチン酸塩群では高フィチン酸塩群と比較して股関節および主要骨粗鬆症性骨折の両方で有意に高かった[62]。さらに、被験者1473名を対象とした前向き研究では、フィチン酸塩の摂取量が多いほど、ミネラル密度が高くなることが見出された[63]。Lopez-Gonzálezet al., 2011 [64]は、同様の設計研究で同様の結果が得られており、フィチン酸塩の摂取量は食物に関する質問票で測定され、骨密度を2重X線2重エネルギー吸収測定法で評価された。その結果は、適切なフィチン酸塩摂取が閉経後女性の骨密度低下の予防に重要な役割を果たしている可能性を示した[64]。
Sanchis et al., 2021 [9]は横断研究を実施し、415人の女性が地中海式食事法およびフィチン酸塩摂取の遵守を推定するために設計された有効な14項目の質問票に回答し、2重エネルギーX線吸収測定法(DXA)によりL1-L4の骨密度を評価した。その結果、フィチン酸塩の摂取量が少ないことと腰椎の骨密度が低いこととの間に有意な関連が認められた[9]。これらのデータによると、少なくとも307mg/日の摂取は骨ミネラルの損失を予防する。地中海式食事法では1日1~2gのフィチン酸塩を摂取するため、実際的な意味では、これは非常に達成可能であろう[31, 65]。
この意味で、地中海食事法は骨密度を増加させる効果的な方法であることが示されている。前述したように、食事は骨粗鬆症のリスクを低下させるために重要な修正可能な因子である[66]。地中海式食事法は、DASHなどの他の食事法と同様に、果物、野菜、豆類およびナッツ類が豊富であり、その全てが疫学的研究において良好な骨の健康と関連している[52, 66, 67, 68]。
4.4. Clinical Trials in Humans(人間での臨床試験)
前述のように、Guimeràet al., 2022 [49]は、副次評価項目として骨密度(BMD)に対する毎日のフィチン酸塩補給の効果について、ヒトにおける最初のランダム化比較試験を実施した。BMDおよび骨吸収抑制治療に対する反応を予測する血清マーカーとして、同氏らはß-Crosslapsを使用した。大腿骨および/または脊椎に高カルシウム尿症(>250mg/24時間)および骨減少症または骨粗鬆症(濃度測定で判定)を有し、380mg/日のカルシウム–マグネシウムInsP6カプセルの投与を受けた患者は、補給の3ヵ月後にプラセボ群と比較して、β-Crosslaps値が有意に低かった。
5. Phytate Cognitive Function and Neurodegenerative Disease(フィチン酸認知機能と神経変性疾患)
5.1. Background and In Vitro Studies(背景とインビトロ研究)
正常かつ最適な脳機能を維持または達成することは、認知能力を向上させたい、そして神経変性疾患の発症リスクを低下させたいと願う人々(学生、労働者、スポーツ選手など)にとって関心の対象である。認知能力と認知機能低下は多因子性である[69]。カルシウム恒常性、ミトコンドリア機能障害、酸化損傷、全身性炎症、ストレスに対する感受性の増加などの生理学的プロセスは、認知機能低下の特徴である可能性がある[68]。
栄養の選択は脳の健康に何らかの役割を果たす可能性がある。食品群(果物、野菜、シリアルと穀物)と栄養素(亜鉛、セレン、銅、繊維、一部のビタミン、植物化学物質、ポリフェノール)は、認知低下に対する保護因子として、また認知機能増強剤として同定されている[69, 70, 71]。
脳組織は、高レベルの多価不飽和脂肪酸、低抗酸化濃度(スーパーオキシドジスムターゼおよびカタラーゼは肝臓組織より低い)および高酸化ストレス環境のため、酸化ストレスに非常に感受性である[72]。フィチン酸およびその代謝産物(InsP5からInsP2へ)は強力な抗酸化および抗炎症作用を示すことができる。それは触媒されたヒドロキシルラジカル(OH-)形成を阻害し[72, 73]、脂質過酸化を阻害し[72, 74]、鉄関連のフリーラジカル生成を最小限にし、それによりニューロン損傷および喪失を軽減する[72, 73, 74]。さらに、InsP3、InsP4またはInsP5ではなくInsP6は、アミロイドβの蓄積に関与する蛋白質であるアミロイドβ前駆体蛋白質(BACE1)の活性を阻害する。BACE1阻害薬はAβの蓄積を防ぐことができる[75]。これらの結果はすべてin vitroモデルで得られた。
5.2. Animal Studies(動物研究)
フィチン酸塩は脳に送達されることができる。Grases et al., 2007 [76]は、ラットモデルを用いた研究で、フィチン酸を高濃度に摂取したラットの脳では、他の組織に比べてフィチン酸濃度が10倍に増加したことから、フィチン酸が血液脳関門を効率的に通過できることを実証した。
アルツハイマー病は、高度に蔓延している進行性神経変性疾患です。脳におけるβアミロイドの蓄積は、生理病理学に関与している。Anekonda et al., 2011 [77]は、ニューロン内βアミロイド蓄積が増加したTg2576マウスモデルにおいて、アミロイドβに対するフィチン酸塩の保護作用を評価した。6か月間にわたり、雌ラットに2%フィチン酸飲料水またはプラセボを投与した。銅、鉄、亜鉛の脳への影響は認められなかった。それにもかかわらず、フィチン酸塩は中程度の抗アミロイド効果と潜在的な新規治療標的(SIRT1、PAMPK、オートファジーおよび小胞タンパク質)に対する効果を有した。豆類、穀類、油糧種子、ナッツ類は地中海食事法で1–5%のフィチン酸を供給するので、2%の用量はむしろ穏やかであると考えられる。フィチン酸も忍容性が高かった。著者らは、フィチン酸摂取がカロリー制限を模倣し、オートファジー(AMPK経路の活性化)を促進し、アミロイドβ前駆体蛋白質(APP)およびその分解産物のクラスリン被覆エンドサイトーシスを調節するという仮説を立てた。
パーキンソン病は、アルツハイマー病に次いで2番目に多い神経変性疾患です。過剰の鉄蓄積はパーキンソン病に関連する最も重要な組織病理学的及び病態生理学的プロセスの1個として確立されている。フィチン酸摂取は、細胞培養モデルにおける正常および過剰鉄条件下の両方で、6‐ヒドロキシドーパミン(6‐OHDA)誘導アポトーシスを減少させることができた[73]。これらの結果は、Wistarラットの(6-OHDA)誘発パーキンソン病で再現された[74]。経口フィチン酸塩による前処置を受けたラットでは、6-OHDA損傷ラットにおける有意な回転の減少と運動の非対称性が認められた[74]。
5.3. Epidemiological Studies(疫学的研究)
フィチン酸塩を多く含むことが知られている食事は、認知機能低下の軽減と関連している。年1回の認知機能検査を受け、脳卒中の既往がある患者106人を対象としたコホート研究[78]では、食習慣を知るために食物摂取頻度質問票が用いられた。全粒穀物、葉物野菜、その他の野菜、豆類およびナッツ類を豊富に含む食事を摂取していた被験者は、平均5.9年間の追跡期間中に全般的な認知機能低下の速度が遅いことが判明した[78]。この食品タイプの組み合わせは、フィチン酸塩も豊富な地中海式およびDASH食に典型的である[33, 34]。実際、Van der Brick et al., 2019 [79]は、広範なレビューにおいて、認知機能低下およびアルツハイマー病を予防する手段として、地中海式食事法、DASH食、またはこれらの併用に対する固守の向上を支持している[79]。
フィチン酸摂取と認知機能低下および神経変性疾患の予防との関連性が見出されている。最近、Larvie et al., 2021 [69]は、2013~2014年の国民健康栄養調査(NHANES)および対応する食品パターン同等物データベース(FPED) のデータを用いて、フィチン酸の摂取量と認知機能との関連を検討した。60歳超の成人では、他の共変量を制御した後、フィチン酸塩の1日摂取量が認知機能と正の関連を示したことを、同研究者らは見出した。
これらの結果は高齢者集団に限ったものではなかった。Cormick et al., 2019 [80]は、高得点の軌跡に関連する因子を見出すために、生後6ヶ月から60ヶ月(5年間)の小児835名を追跡した。フィチン酸摂取は、より高い学業成績および認知能力と有意に関連していた。
5.4. Clinical Trials in Humans(ヒトでの臨床試験)
これまでのところ、認知機能低下および神経変性疾患におけるフィチン酸摂取の効果を評価するランダム化臨床試験はない。
6. Phytate Intake, Type 2 Diabetes Mellitus and Cardiovascular Health(フィチン酸摂取、2型糖尿病、心臓血管の健康)
6.1. Background and In Vitro Studies(背景とインビトロ研究)
T2DM(2型糖尿病)は、炭水化物、蛋白質および脂肪代謝の変化を伴う高血糖を特徴とする内分泌疾患である。微小血管および大血管合併症は、T2DMの制御不良の患者における主な懸念事項である。2022年のアメリカ糖尿病協会の標準治療は、単にグルコース中心のアプローチではなく、代謝中心のアプローチによる治療に焦点を当てている[81]。DM2患者の大半は心血管リスクが高いか非常に高い患者である[82]。高血糖を制御し、他の心血管リスク因子を管理することが、患者中心の治療の目標であろう[81]。
持続的で制御されていない高血糖は、細胞膜透過性と膜貫通電位の変化を引き起こし、細胞と環境との関係に影響を与える[83]。このように、過分極はグルコース酸化[84]、蛋白質糖化[85, 86]、ポリオール経路の活性化、および酸化ストレスの増加を誘導し、軽度炎症および酸化促進状態[83, 84, 85, 86, 87]の状態につながる。
フィチン酸塩の摂取は高血糖のコントロールに役割を果たすことができるが、より重要なことに、異なる機序による心血管リスクの低下にも関与している。イノシトール代謝の変化(イノシトール尿症およびイノシトール細胞内枯渇)は、数件のヒトおよび動物試験で高血糖およびインスリン抵抗性と関連している[88]。フィチン酸塩は鉄キレート剤として作用し、鉄主導のヒドロキシルラジカル生成を防止し、脂質過酸化を減少させることにより酸化ストレスを減少させる[72, 73, 74]。InsP6および(InsP6の分解を介した)低級形態、特にInsP3の形成は、カルシウム恒常性を調節することによりインスリン分泌に重要な役割を果たす[89, 90]。フィチン酸によるアミラーゼ阻害活性が報告されており、炭水化物の消化吸収速度を低下させると考えられる[91]。さらに、フィチン酸はレプチンを減少させ、アディポネクチンレベルを増加させることによって、プラスの効果を発揮することができる[89]。一方で、レプチンの作用は、食物に対する欲求の増加、満腹感の減少、エネルギー利用を促進する[88]。他方、より高いアディポネクチン濃度は抗酸化反応を生じ、C反応性タンパク質およびインターロイキン-6(IL-6)のレベル低下と関連する[88]。
InsP6は脂質代謝に影響する。研究者らは、リパーゼ活性、総コレステロール、低比重リポタンパク質、肝臓総脂質、肝トリグリセリドの低下を報告しているが、InsP6補充では高比重リポ蛋白値の上昇も見られる[88]。フィチン酸塩投与の塩タイプは結果の脂質レベルに決定的である。フィチン酸ナトリウム型はコレステロール濃度を低下させるが、カルシウム-マグネシウム型はコレステロール濃度を上昇させる可能性がある[88]。カルシウム-マグネシウム型は胆汁酸と結合せず、便中胆汁排泄を減少させるという仮説が立てられている[92]。
AGEの蓄積をもたらす蛋白質糖化は、腎症、網膜症および神経障害を含む糖尿病合併症を誘発する主要因子の1個であると考えられている[92, 93, 94, 95, 96, 97]。AGE蓄積は細胞内シグナル伝達と遺伝子発現を変化させ、炎症性分子とフリーラジカルを放出する[93, 94, 95, 96, 97, 98]。実際、タンパク質はAGEを産生することができる唯一の分子ではなく、他の内因性成分、脂質または核酸もAGEを産生することができる[93, 94, 95, 96, 97, 98]。Sanchis et al., 2018 [31]は、InsP6がFe3+を強力にキレート化し、その後のフリーラジカルの形成を防ぐことができるため、InsP6がAGE形成を用量依存的に有意に減少させることを示した[31]。
赤血球分布幅(RDW)は赤血球の大きさの変動量の数値的尺度であり、貧血の鑑別診断に日常的に用いられ、心血管疾患および貧血の予測因子として示唆されている[88]。炎症は鉄代謝の障害を介してRDWレベルを増加させる可能性がある[99]。InsP6は抗炎症作用および抗酸化作用を介してRDWを減少させることができた[88]。
高尿酸血症は心血管イベントの危険因子と考えられており、男性における急性関節炎の最も頻度の高い原因である[100]。地域住民の血清尿酸レベルが歴史的に低かった国でさえ、西洋式の食事パターンの獲得により血清尿酸濃度(SUA)の増加を経験している[100]。食事性プリン体摂取の制限は、空腹時SUAを維持するための効果的な方法である。しかしながら、プリン体摂取を長期的に制限することは困難であろう[100]。InsP6は、プリンヌクレオチドの加水分解を競合的に阻害することにより、in vitroでプリン代謝を阻害することが示されている[100]。フィチン酸塩の潜在的な心血管生物活性の概要を以下に示す(図2)。
図2
フィチン酸の心血管系の健康に対する潜在的な生理活性の概要。
6.2. Animal Studies(動物研究)
Dilworth et al., 2005 [89]は、ラットにフィチン酸塩+亜鉛、フィチン酸塩のみ、亜鉛のみ、またはプラセボを投与した比較試験で、肝臓のトランスアミナーゼと同様に、炭水化物および脂質の代謝に関与する酵素の活性を評価した。フィチン酸塩は2個の異なる源から得られた:サツマイモ(Ipomea batatas)から抽出したフィチン酸と市販のフィチン酸。フィチン酸は血糖値を低下させ(両方のフィチン酸源で見られた)、グルコース-6-リン酸デヒドロゲナーゼの活性を増加させた(これはサツマイモから抽出されたフィチン酸でのみ見られた)。グルコース‐6‐リン酸デヒドロゲナーゼによるNADPH生成は、還元型グルタチオンレベルを維持するためにグルタチオン還元酵素により利用された。抗酸化環境の促進は、フィチン酸によるグルコース-6-リン酸デヒドロゲナーゼ活性の上方調節がインスリン抵抗性を低下させる理由の説明の1個である可能性がある[87]。同様の結果は、Onomi et al., 2004 [101]によって高ショ糖飼料を与えたラットですでに発見されている。高ショ糖食と0.2%から10%のフィチン酸塩が与えられた[101]。10%のフィチン酸ナトリウムを摂取したラットは、用量依存的に脂質生成酵素の減少、成長、摂餌量、血清トリグリセリド値およびコレステロール値の低下を経験した[101]。Lee et al., 2006 [102]は、異なる濃度のフィチン酸ナトリウム(0、0.5、および1%)を添加した精製飼料を糖尿病KKマウスに8週間与えたところ、カロリー摂取量、体重、空腹時血糖値、随時血糖値、糖化ヘモグロビン値(HbA1c)、ならびにインスリン値が低下したと報告した[102]。
フィチン酸は、in vitroおよびストレプトゾトシン-ニコチンアミド誘発2型糖尿病ラットにおいて、標準薬アカルボースと同等のα-グルコシダーゼおよびα-アミラーゼ活性の阻害を用量依存的に引き起こす可能性がある[103]。フィチン酸の抗糖尿病作用は、炭水化物の消化産物の生成とそれに続く吸収の減少を示す腸アミラーゼ活性の低下を介して部分的に作用し、ランダム血糖値のスパイク率を低下させる可能性がある[103, 104]。
高脂肪食とストレプトゾトシンはSprague DawleyラットでT2DMを誘導するために使用されるモデルである。Omoury et al., 2013 [104]は、このモデルを用いて、InsP6とイノシトールの組み合わせが代謝的健康のいくつかのマーカーに及ぼす影響を、グリベンクラミドと比較して4週間にわたって研究した。上記用量のInsP6とイノシトールの組み合わせはグリベンクラミドよりも良好な血糖コントロール(血糖低下+HOMA‐IR指数低下)を達成した。興味深いことに、これはレプチンレベルがフィチン酸によって増加することを示した最初の研究であった[104]。レプチン濃度の増加は、この研究でフィチン酸を投与されたラットが摂餌量を45%減少させた理由を説明することができる。フィチン酸塩摂取による脂質代謝への影響は予想通りであり、トリグリセリドと総コレステロールの減少がさまざまな研究で見られた[101, 104]。非常によく似たアプローチを使用した、その後の研究[105]では、InsP6とイノシトールまたはグリベンクラミドを併用投与した糖尿病ラットの血清α-アミラーゼ活性の増加は、非糖尿病対照群と比較して有意ではなかった。低い血清α‐アミラーゼ濃度は膵臓外分泌‐内分泌疾患と関連する。著者らは、InsP6とイノシトールまたはグリベンクラミドの併用投与を受けた糖尿病ラットにおける血清α-アミラーゼ活性の有意ではない上昇が、非糖尿病対照群と比較して、T2DMに起因する代謝異常を回復させる可能性があるという仮説を立てた。InsP6とイノシトールの併用投与群におけるNa+́/K+́ATPase活性の低下傾向は、腸管炭水化物の吸収を低下させる可能性があった。さらに、この後の研究において、InsP6およびイノシトールまたはグリベンクラミドで治療された糖尿病ラットにおけるRDWレベルの低下が心血管リスクを低下させる可能性があることを著者らは見出した。
6.3. Epidemiological Studies in Humans(人間における疫学的研究)
地中海食およびDASH食は、血糖コントロールの改善および心血管リスクの低下に有効であることが繰り返し示されている。さらに、これらの食事法にはフィチン酸塩が豊富に含まれている[33, 34]。最新の「心血管の健康改善のための食事ガイドライン」では、地中海式食事法とDASH食が心血管疾患リスク(CVD)を低下させるために推奨されている[24]。ATTICA研究[106]では、地中海式食事法への固守が高い患者は、正常血糖患者と糖尿病患者の両方で空腹時グルコース恒常性、インスリンレベル、低いインスリン抵抗性指数(HOMA)を改善したことが明らかになった[106]。いくつかの研究は、地中海式食事法の遵守が血糖コントロールの喪失に対する保護効果を発揮することを証明した[106]。心血管の健康および血糖コントロールに対するこれらの効果は、地中海式食事の抗酸化作用および抗炎症作用によってもたらされる可能性がある[107]。
より具体的な方法では、地中海式食事法に含まれる特定の食品が単独で調査されている。いくつかの研究は、心血管系予防のための豆類とナッツのより高い摂取がそのことを証明した[24, 25, 26]。ナッツ類は心血管疾患、特に冠動脈性心疾患および脳卒中の発生率と死亡率に対する保護因子として同定されている[22, 26]。豆類および全粒穀物の食事摂取量の増加により、血糖コントロールの改善およびHbA1cの低下が報告されている [107, 108, 109] 。特に水溶性食物繊維の大量摂取は、2型糖尿病患者の血糖コントロールを改善し、高インスリン血症を軽減し、血漿脂質濃度を低下させる[108]。
豆類と全粒穀物はInsP6と繊維が豊富である;これは、科学文献で報告されている利益をある程度説明することができる。Sanchis et al., 2018 [31]は、地中海地域ではInsP6消費が非糖尿病患者よりもT2DM患者で低いことを示唆する観察的証拠があると述べている(未発表データ)[31]。
6.4. Clinical Trials in Humans(ヒトでの臨床試験)
この点に関して発表されたほとんどの臨床試験は、T2DMまたは心血管の健康に対する地中海食事法またはDASH食の効果を調査している。心血管疾患の一次予防に関する多施設ランダム化試験 (Prevencióncon DietaMediterránea 「PREDIMED」研究) [110]では、心血管リスクの高い55歳~80歳の無症候性患者772人を対象に、低脂肪食と比較して空腹時血糖値の改善、血圧の低下および高密度リポ蛋白(HDL)/コレステロール比の上昇が認められた。参加者はいずれの食事でも体重が減少しなかった[110]。Toobert et al., 2013 [111]は、閉経後女性279人を対象に、地中海式ライフスタイルプログラム(MLP)の有効性を試験した。6ヶ月の介入後、HbA1cの0.4%単位の低下が報告された[111]。2型糖尿病患者259名を対象とした1年間のランダム化試験において、低炭水化物地中海式食事法、伝統的地中海式食事法、およびアメリカ糖尿病協会(ADA)提案の食事法が比較された。低炭水化物地中海食事法および伝統的地中海食事法は、他の食事法と比較して、より良好な減量効果およびHbA1cの低下を示した[112]。
特定の高フィチン酸食品が心血管の健康を改善する効果が臨床試験で検証されている。最近、2型糖尿病患者31人が2郡の異なるグループにランダムに割り当てられた:一方は豆類を含まない食事を摂取する群と、他方は豆類ベースの食事を8週間摂取する群。豆類は血清アディポネクチン濃度を有意に増加させた[113]。
フィチン酸塩の効果を食事法の他の成分と解明したり区別することは困難であるため、InsP6のみを用いた臨床試験が必要である。実際、Sanchis et al., 2022 [114]は、ランダム化クロスオーバー試験において、2型糖尿病患者にカルシウム-マグネシウムInsP6 380mgのカプセル1錠を1日2回で12週間投与した。InsP6補充を受けた患者は、血清HbA1c値が有意に低下し、アディポネクチン値が上昇した。しかし、IL‐1β、IL‐6および腫瘍壊死α (TNF‐α) には差がなかった。この研究は、フィチン酸補給がT2DM患者のアディポネクチンレベルを増加させることを初めて証明した。
Sanchis et al., 2018 [31]は、InsP6のタンパク質糖化に対する阻害作用を、T2DM患者におけるin vitroおよびin vivoのAGEを減少させたことを初めて報告した。このランダム化クロスオーバー試験[31]では、患者35人がInsP6食事法(食事計画にカルシウム-マグネシウムInsP6 380mgカプセル1錠を追加)または非InsP6食事法(InsP6を補充しない同じ食事計画)のいずれかを受けた。被験者がInsP6を補給したところ、彼らは循環AGE値が25%低下し、HbA1c値が3.8%低下を体験した、おそらく全体的なタンパク質の糖化の低下によるものであった。
Ikenaga et al., 2019 [100]は、ランダム化二重盲検プラセボ対照試験において、高尿酸血症の被験者における空腹時SUA値に対するInsP6の反復摂取の効果を評価し、1日2回600mgのInsP6を2週間補給することにより、これらの被験者における空腹時SUA値が改善することを実証した[100]。
7. Phytate Intake and Cancer(フィチン酸摂取と癌)
7.1. Background and In Vitro Studies(背景とインビトロ研究)
過体重または肥満を伴う生活は、少なくとも13の解剖学的部位における一連の悪性腫瘍のリスク増加(男性で11.9%、女性で13.1%)と関連している[115]。インスリン抵抗性および不良な代謝プロファイルは、過剰体重と癌との関連性の2個の生理学的要因である軽度の炎症および酸化ストレスにつながる可能性がある[115]。栄養はがんの予防や治療にも重要な役割を果たします。
フィチン酸の抗癌活性は完全には解明されていない[116]。フィチン酸は癌細胞に到達することができる[116]。シグナル伝達経路における低リン酸イノシトールリン酸(InsP1-3)の関与は、悪性細胞の細胞周期調節、増殖、分化に影響を及ぼす可能性があるという仮説が立てられている[117]。鉄キレート化効果とヒドロキシル形成の抑制は、フィチン酸摂取の抗酸化作用を説明し、これは癌の特徴である軽度の炎症を減少させる役割を持つ可能性がある[69, 73, 117, 118]。
1998年以来、科学的証拠は、フィチン酸が細胞増殖と成長、転移、血管新生、アポトーシスおよび分化などの悪性腫瘍に関与する経路を阻害できることを示している[118, 119, 120, 121, 122]。フィチン酸塩によってもたらされる効果は、治療に関連する副作用を減少させることにより、化学療法を受けている患者に利益をもたらし、患者の生活の質を改善し、長期生存率を改善することさえできる[117]。
フィチン酸は用量および時間依存的に異なる細胞株の増殖を阻害することが示されている[117]。これは、造血細胞系(正常および白血病)[123, 124]、ヒト結腸癌細胞系[119, 122]、乳癌細胞系(エストロゲン受容体陽性および陰性)[125]、子宮頸癌細胞系[119]、前立腺癌細胞[126, 127, 128]、肝癌[129]、線維肉腫[130]および横紋筋肉腫[131]において見られている。最近、Markiewicz et al., 2021 [131]は、癌由来の細胞株(HCT116およびHT-29)および健康なヒト結腸上皮由来の細胞株(NCM460D)に対するフィチン酸塩および酪酸塩(PA1B1)の複合作用を検討した。彼らは、フィチン酸塩と酪酸塩が共に癌細胞におけるアポトーシス促進作用を増強する一方、健康な細胞ではフィチン酸塩が酪酸塩の増殖促進作用を抑制し、生存促進経路を活性化することを発見した[132]。フィチン酸は癌細胞に対して特異性を示し、選択的作用を有する薬物である[72]。フィチン酸塩摂取が癌に及ぼす潜在的利益の概要を以下に示す(図3)。
図3
フィチン酸が癌に及ぼす潜在的な有益な生理活性の概要。
7.2. Animal Studies(動物研究)
腫瘍活性を低下させるフィチン酸の有効性は、いくつかの動物モデルで試験/実証されている。最も研究されている分野の1個は結腸癌である。ラットとマウスに様々な発癌物質を与え、フィチン酸塩を食物または水と混合して投与し、有望な結果を得た。フィチン酸塩は、動物の結腸陰窩における有糸分裂率を低下させ[133, 134, 135]、食餌性鉄のキレート化を増加させ、発癌の促進期を減少させ [136]、異常な陰窩の形成を減少させ[137, 138, 139]、細胞のアポトーシスと分化を増加させ[140, 141]、結腸形態に好ましい影響を与える[140, 141]。
これらの結果は、異なる実験モデルを用いた他の研究が他の組織におけるInsP6の有効性を示したように、結腸組織に限定されなかった。肝組織において、InsP6は移植マウスモデルにおいて腫瘍形成性を阻害し、HepG2細胞の増殖を抑制/退縮させることができた[142]。肝細胞モデルを用いても同様の結果が得られた[143]。肺では、フィチン酸塩は肺発癌を減少させた[144, 145]。乳腺組織では、InsP6とイノシトールを併用した場合、乳がんの発生率が19%低下したと報告した研究もある[146]。腫瘍数、多重度および腫瘍サイズもInsP6+イノシトールの使用により減少した[147]。皮膚発がんモデルでは、イニシエーション期にInsP6を摂取した動物は、動物当たりの平均乳頭腫数が約50%減少した[148]。フィチン酸摂取は用量及び時間依存的に横紋筋肉腫の増殖を阻害する。研究が5週間に延長されたところ、InsP6を投与したマウスで腫瘍サイズの49倍の縮小が観察された[131]。2006年に初めて、in vivoマウスおよびin vitroヒト前立腺細胞を用いた試験で、フィチン酸が用量依存的にマウスおよびヒト前立腺癌のテロメラーゼ活性を抑制することが見られた[149]。様々な研究では、フィチン酸塩の有効性は発がん物質投与の前または後に投与された用量に依存すると報告されていることに言及する価値がある[117]。
フィチン酸塩は穀類や豆類に豊富に含まれる。Vucenick et al., 1997 [150]は、ラットを用いた比較試験を実施し、フィチン酸塩の大量摂取で報告された抗がん効果が、ふすまの摂取によるものか、フィチン酸塩の摂取によるものかを調べた。彼らは5グループを確立した:フィチン酸を含まないグループ(AIN-76飼料);Kelloggs’ All Branを5%、10%または20%含有するAIN-76A飼料;第5グループには飲料水中0.4%のInsP6(ふすま中の20%に含まれるInsP6量に相当)を投与した。腫瘍発生率は、それぞれ16.7%、14.6%および11.4%低下した。20%のふすまに相当する0.4%のInsP6を飲水投与したラットのみが腫瘍発生率を33.5%低下させ、統計的に有意であった。結果は、この効果がInsP6摂取に固有であることを示した[150]。
※ふすま
小麦をひいた時にできる皮のくず
7.3. Epidemiological Studies in Humans(ヒトにおける疫学的研究)
生活習慣への介入は、がん発生率の低下に不可欠である。食事因子はがん発症リスクの決定に重要であると考えられているが、がんリスクに対する食事の正確な影響を確立することは困難であることが立証されている[151, 152, 153, 154]。Papadimitiu et al., 2021 [155]が最近発表した包括的レビューでは、カルシウム、乳製品、および全粒穀物製品が結腸直腸癌のリスク低下と関連していた[155]。さらに、果物および野菜の摂取は頭頸部癌リスクと逆相関した[155]。いくつかの研究は、地中海式食事法、DASH食事法および他の類似した食事法には、癌の発生に対する予防効果があることを示している[151]。
地中海食品(魚、野菜、全粒粉、豆類、ナッツ類、種子、果物など)の摂取は、腫瘍細胞の増殖を抑制する一連の機序を介して癌発生リスクの低下に寄与する一方、抗酸化作用および抗炎症作用は化学保護作用を増強し、腫瘍発達を抑制する[151]。
乳がんでは、地中海食事法への高い固守により、特に閉経後女性で[157]、発生率が6–20%低下する[156]。結腸直腸癌では、地中海食への高い固守により結腸直腸癌のリスクが男性で30%、女性で45%低下する[158]。前立腺癌では、地中海食事法への高い固守は、前立腺癌の低い発生率と逆相関するだけでなく、転移のない患者における癌の悪性度および死亡率の低下とも関連していた[159, 160]。同様の結果は、胃がん[161]、膀胱がん[162]、頭頸部がん[163]、膵がん[164]および肺がん、特にヘビースモーカー[165]などの他の悪性腫瘍でも再現されている。過体重または肥満はエストロゲン産生およびホルモン不均衡を増加させ、子宮内膜癌などのホルモン関連悪性腫瘍のリスクを高めることは言及に値する[166]。地中海食事法の減量効果はホルモン不均衡関連の悪性腫瘍の減少に役割を果たす可能性がある。
食物マトリックスは、食物のいかなる単一成分単独よりも大きな影響を及ぼすことがすでに知られている[167]。すでに1985年に、Graf et al. [168]などの研究者が、高繊維食は必ずしも結腸癌の低い発生率と相関しないと述べており、追加の食事成分の関与を示唆します[168]。著者らは、フィチン酸の抗酸化作用および抗炎症作用が、繊維摂取とは無関係に、結腸直腸癌の発生率低下の原因であるとの仮説を立てた。
地中海式食事法に典型的に見られる食品の中には、健康にプラスの影響を及ぼす可能性のある栄養マトリックス中の様々な成分(例えば、ナッツ、種子、全粒穀物は、オメガ3、繊維、フィチン酸塩、植物化学物質とポリフェノールを含む)を有するものがあり、したがって、どの成分がどの特定の効果を発揮するかを確立するための今後の特定の研究の方法論的デザインが絶対的な優先事項である。
7.4. Clinical Trials in Humans(ヒトでの臨床試験)
癌治療は、より良い根治率と生活の質の向上を達成するために進化してきた。しかしながら、全体的な治癒率は依然として不十分である。さらに、癌治療薬の毒性によって引き起こされる問題は、癌患者の生活の質に対する問題として残っている。がん治療の副作用を軽減するために、新しい治療選択肢が導入されています。フィチン酸などの一部の栄養補助食品は、がん発生に対する予防手段として、治療薬として、さらには生活の質を改善するための補助薬としてさえ研究されている[169]。
肺癌では、フィチン酸ではなくミオイノシトールを12~30g/日の用量で投与すると、既存の異形成病変の退縮率が有意に上昇した(第I相[170]および第IIb相[171]試験) 。最高の効果は18gで認められ、それ以上の用量ではさらなる恩恵は認められず、副作用が増大した。
乳癌は世界的に女性集団における最も一般的な悪性腫瘍である。フィチン酸、およびフィチン酸とミオイノシトールの組み合わせは、乳癌の治療における潜在的な有益性について研究されている[116, 172]。化学療法中にフィチン酸とイノシトールの併用療法を受けた乳管浸潤性乳癌患者は、プラセボ群と比較して、有意に高い生活の質と高い機能スコアを示した[172]。さらに、この併用療法群では白血球や血小板の減少は認められなかったが、これは血液学的合併症や感染症に対する感受性を最小限に抑えるために重要な結果である[172]。Proietti et al., 2017 [116]は、6ヵ月にわたって実施された2重盲検ランダム化比較試験において、病期II~IIIの乳管癌術後(乳腺腫瘤摘出術)患者に化学療法中に1日200mgの局所InsP6を使用した[116]。その結果、治療群では副作用が少なく、化学療法サイクルの延期が少なく、QOLおよび機能状態が改善した。以前の研究で見られたように、白血球数はInsP6患者では正常値のままであったが、対照群では劇的に減少した[116]。
結腸癌は世界で最も多い癌の1個である。結腸癌にフィチン酸塩を用いたin vitroおよび動物実験で有望な結果が観察されており、第1に副作用を防ぐ化学保護剤として作用し[169]、第2にNK細胞に対する免疫刺激作用を示し、腫瘍発生率の低下と関連している[173, 174]。しかしながら、これらの結果は人間では確認されていない。
1件の症例報告[175]は、メラノーマに対するフィチン酸塩とイノシトールの組み合わせの有益性を示される。IV期黒色腫と診断された患者が従来の治療を拒否し、代わりにInsP6とイノシトールを試した。患者は完全寛解を達成し、3年後も寛解を維持している。これらの結果は再現されていない。
8. Other Phytate Applications(その他のフィチン酸の用途)
抗生物質耐性の増加した有病率は、微生物活性を減少/阻害できる天然成分の発見を重要にする公衆衛生問題である。フィチン酸は、Enterococcus faecalis [176]、Escherichia coli O157:H7 [177およびBacillus Subtilis [178]に対してin vitroで抗菌性を示した。そのメカニズムは完全にはわかっていないが、弱酸説はフィチン酸の細胞質とpH恒常性に対する破壊的効果を説明することができる [137]。
フィチン酸はin vitroで抗ウイルス作用を示した。フィチン酸はヒト免疫不全ウイルスの細胞変性作用を阻害したことから、初期の複製段階に作用するのではないかという仮説につながった[179]。
InsP6を豊富にしたビスケット[4]、結石症を予防するためのフィチン含有カプセル、歯垢予防のための口内洗浄液[4]はすべて市販されている。
基礎研究およびトランスレーショナルリサーチの研究により、様々な加齢に伴う病態の発症および進行におけるAGEの役割が明らかにされている[180]。Sanchisら (2018) [31]は、3ヶ月間のInsP6食が2型糖尿病患者の循環AGEレベルを有意に低下させたことを示した(~25%)。この効果はInsP6が媒介するFe3+́のキレート化によって説明されるようである[31]。
フィチン酸塩は食品安全産業に応用できる可能性がある。いくつかの研究では、生肉と加熱調理された肉の両方の安定性を、加熱調理された場合にはより大きく延長する食品添加物として推奨できることが示されている[181]。さらに、ワインや他の飲料へのInsP6の添加は、飲料中の高金属含有量の副作用と毒性を低減するであろう[182]。製薬業界はラットでInsP6の薬物への添加を試験し、それが薬物吸収を改善し、経口生物学的利用能を増加させることができることを示した[183]。歯科分野では、虫歯予防効果をもたらす抗菌作用が注目されている[184]。ヒドロキシアパタイトに結合する能力も実証されており、HAP結晶の成長と溶解の両方を制限する単分子表面層を形成し、齲蝕、プラーク形成およびエナメル質溶解を阻害する[185]。これらの知見は、いくつかの特許取得済みの口腔ケア計画の開発につながった[185]。
9. Controversies of Phytate Intake(フィチン酸摂取に関する議論)
生物学的利用能は、栄養素(微量栄養素および多量栄養素)の細胞および臓器への吸収量と供給量の尺度である。栄養素の生物学的利用能のいかなる減少も私たちの健康に影響を及ぼす可能性がある。私たちの体にはエンドフィターゼがありません;したがって、フィチン酸塩は人体で分解されない[186]。したがって、フィチン酸塩中でキレート化されたミネラルは生物学的に利用できない。この発見により、フィチン酸塩は「抗栄養素」と分類されるようになった。それにもかかわらず、この影響は、食品加工中(植物/小麦粉に存在するフィターゼによる)および消化中(腸管に存在する微生物叢に発現するフィターゼ活性による)にフィターゼが誘導するフィチン酸の分解によって逆転することができる[187]。他の技術もフィチン酸含量を減らすのに有効である[188]、95°Cで1時間調理するとフィチン酸含量が11–80%減少し[188]、浸漬するとフィチン酸含量が17–80%減少し、発芽させるとフィチン酸含量が60%以上減少する[188]。
いくつかの研究は、フィチン酸塩の摂取がミネラルの生物学的利用能、特に鉄吸収を低下させる可能性があることを示した[23, 189]。Brouns(2022)によって述べられているように、in vivoでの結果はin vitroで得られた結果と異なることがある。in vitroでの可溶性ミネラルの減少は、他の環境/食事因子が関与している可能性があるため、必ずしもin vivoでのバイオアベイラビリティの増加につながるとは限らない[187]。
ミネラルの生物学的利用能はフィチン酸塩:ミネラル比によって計算できる[188]。フィアート/ミネラルの最適比は0.4:1 (フィチン酸:鉄) 以下[190]、15:1 (フィチン酸:亜鉛)以上[191]、0.17:1(フィチン酸:カルシウム)以上[192]であった。フィチン酸と他の栄養素との相互作用についても言及しなければならない。Millerらは、食事性亜鉛を調整した場合、フィチン酸塩が亜鉛吸収に及ぼす影響は非常に小さく、統計的に識別できないと報告した[193]。さらに、Hope et al., 2019 [194]は、人間における12週間のランダム化並行研究で、2個の異なる全粒粉パン製剤を比較した。一方はフィチン酸含量が高く、他方はフィチン酸含量が低かった。フィチン酸含量の差は鉄の状態に影響しなかった。他の研究者は、フィチン酸が30–50%少ない遺伝子組換えトウモロコシと通常のトウモロコシを比較して、鉄代謝に関して同様の結果を観察した[195, 196]。ヒトを対象とした数件の試験でも、1日2gのフィチン酸塩摂取はミネラルバランスに影響しないことが示された[31, 197, 198, 199]。
フィチン酸塩の用量および投与経路は、in vivo(動物および人間)試験で利用可能な様々な試験において非常に多様である。フィチン酸塩の投与とその効果は、InsP6とそのリン酸化イノシトール(InsP5、InsP4、InsP3、およびInsP2)の尿中への出現と関連している[8]。そうでなければ、経口または局所フィチン酸塩が存在しない場合、InsP2のみが尿中で定量可能である[8]。尿中のInsP6とその脱リン酸化生成物を測定するための最良の利用可能な選択肢は、高速液体クロマトグラフィー(HLPC)と質量分析(MS)を組み合わせることである[8]。ラットでは、フィチン酸塩を局所または経口投与すると、尿中のフィチン酸塩とその脱リン酸生成物が増加する[200, 201]。これらの上昇はフィチン酸塩補給中止後22日間持続する[200, 202]。健康なボランティアが高フィチン酸塩を摂取すると、総InsPの尿中排泄量が増加し、高フィチン酸塩摂取中止後16日でベースライン値に戻った[202]。このように、InsP6の局所または経口補給は、動物およびヒトにおける総InsPの尿中排泄を増加させた[8]。しかし、Grases et al., 2019 [8]が述べているように、InsPの化学分析の多くの側面はさらなる研究を必要としており、フィチン酸塩とその脱リン酸化から生じる産物を定量するための特異的な分析法を開発することは非常に興味深い。
InsP6はその高い電荷密度のために細胞膜の脂質二重層を通過できないという考えにもかかわらず(腎臓、脳、骨、血漿、尿)[203]、Grases et al., 2005に複数の組織におけるフィチン酸の浸透を示した[204]。実際、生体内に存在するInsP6の大部分は食物由来であり、その内因性合成は重要ではない[204]。さらに、食餌性フィチン酸塩の摂取量が増加すると、ラットとヒトでフィチン酸塩とその脱リン酸化産物の尿中濃度が上昇することが示されている[8, 197, 200, 201, 202]。実際、フィチン酸とその誘導体は、ビスフォスフォネートの場合と同様に腸から傍細胞に入ると考えられており、このため吸収率は低い。Ferry et al., 2002 [119]は、HeLa細胞培養を検討した試験において、InsP6が飲食的に細胞に入り、その後さらに脱リン酸化されてより低いInsP誘導体になることを示唆した。このように、InP6の吸収が異なる組織に存在することを示す証拠があるが、InsP6が細胞に入る特異的なメカニズムについては更なる研究が必要である。
in vivo、動物および疫学的データで見られるフィチン酸摂取の有効性は、血管石灰化、尿路結石症、骨粗鬆症、認知機能、代謝的健康および癌におけるフィチン酸摂取の有効性を評価するための適切にデザインされたヒト臨床試験の必要性を明らかにした。表1に、フィチン酸塩を用いてヒトで実施されたすべての臨床試験を示す。
Table 1
10. Conclusions
このレビューでは、フィチン酸塩の健康効果をまとめ、今後の課題を明らかにしました(図4)。構造化した方法で、血管石灰化、尿路結石症、骨粗鬆症、認知機能、代謝健康、癌およびいくつかの潜在的応用に対するフィチン酸塩の効果を示した。これらは、私たちの重要なメッセージです:
・フィチン酸塩は体液中の石灰化を防止する強力な薬剤であり、腎結石症治療、唾石症および血管石灰化における有用性がよく知られている。
・フィチン酸塩は骨量の減少を防いだり妨げたりすることもあります。骨粗鬆症で見られたように、低用量のフィチン酸塩は強力な予防効果を発揮する可能性があり、少なくとも307mg/日のフィチン酸塩(ナッツまたは豆類を1日1–2人分)が骨粗鬆症のリスクを低下させる。
・フィチン酸塩は、レプチンレベルの低下、アディポネクチンの増加、炭水化物および脂質代謝の改善、AGEの低下(微小血管および大血管の糖尿病関連合併症および老化の潜在的減少)、抗炎症作用および抗酸化作用の改善、ならびに化学療法中の生活の質の改善に有益であることが示されている。
・神経学的低下、血管石灰化、尿路結石症を直接減少させる薬理学的介入はない。フィチン酸塩はin vitro、動物および疫学的データにおいてこれらの点で有効性を示した。
・地中海食事法やDASH食などのフィチン酸塩を多く含む食事を推奨することは、害を及ぼすことなく複数の健康上の利益をもたらす可能性がある。
・in vivo、動物および疫学的データで見られるフィチン酸摂取の有効性は、血管石灰化、尿路結石症、骨粗鬆症、認知機能、代謝的健康および癌におけるフィチン酸摂取の有効性を評価するための適切にデザインされたヒト臨床試験の必要性を明らかにした。フィチン酸塩の摂取またはフィチン酸塩ベースの薬剤/サプリメントをさらに調査すべきである。
図4
フィチン酸摂取の利点と答えるべき質問。
Funding Statement
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Author Contributions
Conceptualization, A.P., P.S. and L.M.; methodology, A.P., P.S., F.G. and L.M., writing—original draft preparation A.P. and L.M.; writing—review and editing A.P., P.S., F.G. and L.M. All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
1. Perez-Gregorio R., Simal-Gandara J. A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes. Curr. Pharm. Des. 2017;23:2731–2741. doi: 10.2174/1381612823666170317122913. [PubMed] [CrossRef] [Google Scholar]
2. Guasch-Ferré M., Willett W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021;290:549–566. doi: 10.1111/joim.13333. [PubMed] [CrossRef] [Google Scholar]
3. Sanchis P., Molina M., Berga F., Muñoz E., Fortuny R., Costa-Bauzá A., Grases F., Buades J.M. A Pilot Randomized Crossover Trial Assessing the Safety and Short-Term Effects of Walnut Consumption by Patients with Chronic Kidney Disease. Nutrients. 2019;12:63. doi: 10.3390/nu12010063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Buades Fuster J.M., Sanchís Cortés P., Perelló Bestard J., Grases Freixedas F. Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrologia. 2017;37:20–28. doi: 10.1016/j.nefro.2016.07.001. [PubMed] [CrossRef] [Google Scholar]
5. Serra-Majem L., Bes-Rastrollo M., Román-Vinas B., Pfrimer K., Sánchez-Villegas A., Martínez-González M.A. Dietary patterns and nutritional adequacy in a Mediterranean country. Br. J. Nutr. 2019;101((Suppl. S2)):S21–S28. doi: 10.1017/S0007114509990559. [PubMed] [CrossRef] [Google Scholar]
6. Demer L.L., Tintut Y. Vascular Calcification: Pathobiology of a multifaceted disease. Circulation. 2008;117:2938–2948. doi: 10.1161/CIRCULATIONAHA.107.743161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Sanchis P., Buades J.M., Berga F., Gelabert M.M., Molina M., Íñigo M.V., García S., Gonzalez J., Bernabeu M.R., Costa-Bauzá A., et al. Protective Effect of Myo-Inositol Hexaphosphate (Phytate) on Abdominal Aortic Calcification in Patients With Chronic Kidney Disease. J. Ren. Nutr. 2016;26:226–236. doi: 10.1053/j.jrn.2016.01.010. [PubMed] [CrossRef] [Google Scholar]
8. Grases F., Costa-Bauza A. Key Aspects of Myo-Inositol Hexaphosphate (Phytate) and Pathological Calcifications. Molecules. 2019;24:4434. doi: 10.3390/molecules24244434. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9. Sanchis P., López-González Á.-A., Costa-Bauzá A., Busquets-Cortés C., Riutord P., Calvo P., Grases F. Understanding the Protective Effect of Phytate in Bone Decalcification Related-Diseases. Nutrients. 2021;13:2859. doi: 10.3390/nu13082859. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
10. Grases F., Sanchis P., Perello J., Isern B., Prieto R.M., Fernandez-Palomeque C., Saus C. Phytate reduces age-related cardiovascular calcification. Front. Biosci. 2008;13:7115–7122. doi: 10.2741/3214. [PubMed] [CrossRef] [Google Scholar]
11. Grases F., Sanchis P., Perello J., Isern B., Prieto R.M., Fernandez-Palomeque C., Fiol M., Bonnin O., Torres J.J. Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front. Biosci. 2006;11:136–142. doi: 10.2741/1786. [PubMed] [CrossRef] [Google Scholar]
12. Grases F., Isern B., Sanchis P., Perello J., Torres J.J., Costa-Bauza A. Phytate acts as an inhibitor in formation of renal calculi. Front. Biosci. 2007;12:2580–2587. doi: 10.2741/2256. [PubMed] [CrossRef] [Google Scholar]
13. Perelló J., Salcedo C., Ketteler M., Tur F., Tur E., Isern B., Joubert P.H., Ferrer M.D. INTRAVENOUS SNF472 INHIBITS VITAMIN D INDUCED CARDIOVASCULAR CALCIFICATION IN RATS. ASN Kidney Week; Atlanta, GA, USA: 2014. p. 96450. [Google Scholar]
14. Grases F., Sanchis P., Perelló J., Isern B., Prieto R.M., Fernández-Palomeque C., Torres J.J. Effect of Crystallization Inhibitors on Vascular Calcifications Induced by Vitamin D A Pilot Study in Sprague-Dawley Rats. Circ. J. 2007;71:1152–1156. doi: 10.1253/circj.71.1152. [PubMed] [CrossRef] [Google Scholar]
15. Ketteler M., Ferrer M.D., Tur F., Isern B., Salcedo C., Joubert P.H., Perelló J. SNF472 INHIBITS VITAMIN D INDUCED CARDIOVASCULAR CALCIFICATION IN RATS. ASN Kidney Week; Atlanta, GA, USA: 2013. [Google Scholar]
16. Grases F., Perello J., Isern B., Prieto R. Study of a myo-inositol hexaphosphate-based cream to prevent dystrophic calcinosis cutis. Br. J. Dermatol. 2005;152:1022–1025. doi: 10.1111/j.1365-2133.2005.06382.x. [PubMed] [CrossRef] [Google Scholar]
17. Budoff M.J., Young R., Lopez V.A., Kronmal R.A., Nasir K., Blumenthal R.S., Detrano R.C., Bild D.E., Guerci A.D., Liu K., et al. Progression of Coronary Calcium and Incident Coronary Heart Disease Events. J. Am. Coll. Cardiol. 2013;61:1231–1239. doi: 10.1016/j.jacc.2012.12.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Vliegenthart R., Oudkerk M., Hofman A., Oei H.-H.S., Van Dijck W., Van Rooij F.J., Witteman J.C. Coronary Calcification Improves Cardiovascular Risk Prediction in the Elderly. Circulation. 2005;112:572–577. doi: 10.1161/CIRCULATIONAHA.104.488916. [PubMed] [CrossRef] [Google Scholar]
19. Agarwal S., Cox A.J., Herrington D.M., Jorgensen N.W., Xu J., Freedman B.I., Carr J.J., Bowden D.W. Coronary Calcium Score Predicts Cardiovascular Mortality in Diabetes: Diabetes Heart Study. Diabetes Care. 2013;36:972–977. doi: 10.2337/dc12-1548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Russo D., Corrao S., Battaglia Y., Andreucci M., Caiazza A., Carlomagno A., Lamberti M., Pezone N., Pota A., Russo L., et al. Progression of coronary artery calcification and cardiac events in patients with chronic renal disease not receiving dialysis. Kidney Int. 2011;80:112–118. doi: 10.1038/ki.2011.69. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Shantouf R.S., Budoff M.J., Ahmadi N., Ghaffari A., Flores F., Gopal A., Noori N., Jing J., Kovesdy C.P., Kalantar-Zadeh K. Total and Individual Coronary Artery Calcium Scores as Independent Predictors of Mortality in Hemodialysis Patients. Am. J. Nephrol. 2010;31:419–425. doi: 10.1159/000294405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Fernández-Palomeque C., Grau A., Perelló J., Sanchis P., Isern B., Prieto R.M., Costa-Bauzá A., Caldés O.J., Bonnin O., Garcia-Raja A., et al. Relationship between Urinary Level of Phytate and Valvular Calcification in an Elderly Population: A Cross-Sectional Study. PLoS ONE. 2015;10:e0136560. doi: 10.1371/journal.pone.0136560. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Gupta R.K., Gangoliya S.S., Singh N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2013;52:676–684. doi: 10.1007/s13197-013-0978-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Lichtenstein A.H., Appel L.J., Vadiveloo M., Hu F.B., Kris-Etherton P.M., Rebholz C.M., Sacks F.M., Thorndike A.N., Van Horn L., Wylie-Rosett J., et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation. 2021;144:e472–e487. doi: 10.1161/CIR.0000000000001031. [PubMed] [CrossRef] [Google Scholar]
25. Kim Y., Keogh J.B., Clifton P.M. Does Nut Consumption Reduce Mortality and/or Risk of Cardiometabolic Disease? An Updated Review Based on Meta-Analyses. Int. J. Environ. Res. Public Health. 2019;16:4957. doi: 10.3390/ijerph16244957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26. Becerra-Tomás N., Paz-Graniel I., WC Kendall C., Kahleova H., Rahelić D., Sievenpiper J.L., Salas-Salvadó J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Rev. 2019;77:691–709. doi: 10.1093/nutrit/nuz042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27. Perelló J., Joubert P., Ferrer M.D., Canals A., Sinha S., Salcedo C. First-time-in-human randomized clinical trial in healthy volunteers and haemodialysis patients with SNF472, a novel inhibitor of vascular calcification. Br. J. Clin. Pharmacol. 2018;84:2867–2876. doi: 10.1111/bcp.13752. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Perelló J., Gómez M., Ferrer M.D., Rodríguez N.Y., Salcedo C., Buades J.M., Pérez M.M., Torregrosa J.V., Martín E., Maduell F. SNF472, a novel inhibitor of vascular calcification, could be administered during hemodialysis to attain potentially therapeutic phytate levels. J. Nephrol. 2018;31:287–296. doi: 10.1007/s40620-018-0471-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29. Raggi P., Bellasi A., Bushinsky D., Bover J., Rodriguez M., Ketteler M., Sinha S., Salcedo C., Gillotti K., Padgett C., et al. Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis: Results of a Randomized Phase 2b Study. Circulation. 2020;141:728–739. doi: 10.1161/CIRCULATIONAHA.119.044195. [PubMed] [CrossRef] [Google Scholar]
30. Sinha S., Raggi P., Chertow G.M. SNF472: Mechanism of action and results from clinical trials. Curr. Opin. Nephrol. Hypertens. 2021;30:424–429. doi: 10.1097/MNH.0000000000000726. [PubMed] [CrossRef] [Google Scholar]
31. Sanchis P., Rivera R., Berga F., Fortuny R., Adrover M., Costa-Bauza A., Grases F., Masmiquel L. Phytate Decreases Formation of Advanced Glycation End-Products in Patients with Type II Diabetes: Randomized Crossover Trial. Sci. Rep. 2018;8:9619. doi: 10.1038/s41598-018-27853-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32. Saku K., Tahara N., Takaseya T., Otsuka H., Takagi K., Shojima T., Shintani Y., Zaima Y., Kikusaki S., Fukuda T., et al. Pathological Role of Receptor for Advanced Glycation End Products in Calcified Aortic Valve Stenosis. J. Am. Heart Assoc. 2020;9:e015261. doi: 10.1161/JAHA.119.015261. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018;378:e34. doi: 10.1056/NEJMoa1800389. [PubMed] [CrossRef] [Google Scholar]
34. Prieto R.M., Rodriguez A., Sanchis P., Morey M., Fiol M., Grases F., Castañer O., Martínez-González M.A., Salas-Salvadó J., Romaguera D. Association of Adherence to The Mediterranean Diet with Urinary Factors Favoring Renal Lithiasis: Cross-Sectional Study of Overweight Individuals with Metabolic Syndrome. Nutrients. 2019;11:1708. doi: 10.3390/nu11081708. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35. Alelign T., Petros B. Kidney Stone Disease: An Update on Current Concepts. Adv. Urol. 2018;2018:3068365. doi: 10.1155/2018/3068365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36. Grases F., García-Ferragut L., Costa-Bauzá A. Development of Calcium Oxalate Crystals on Urothelium: Effect of Free Radicals. Nephron. 1998;78:296–301. doi: 10.1159/000044939. [PubMed] [CrossRef] [Google Scholar]
37. Grases F., Costa-Bauza A. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: Usefulness in renal lithiasis treatment. Anticancer Res. 2000;19:3717–3722. [PubMed] [Google Scholar]
38. Grases F., Rodriguez A., Costa-Bauza A. Efficacy of Mixtures of Magnesium, Citrate and Phytate as Calcium Oxalate Crystallization Inhibitors in Urine. J. Urol. 2015;194:812–819. doi: 10.1016/j.juro.2015.03.099. [PubMed] [CrossRef] [Google Scholar]
39. Grases F., Perelló J., Simonet B., Prieto R., García-Raja A. Study of Potassium Phytate Effects on Decreasing Urinary Calcium in Rats. Urol. Int. 2004;72:237–243. doi: 10.1159/000077123. [PubMed] [CrossRef] [Google Scholar]
40. Kim O.-H., Booth C.J., Choi H.S., Lee J., Kang J., Hur J., Jung W.J., Jung Y.-S., Choi H.J., Kim H., et al. High-phytate/low-calcium diet is a risk factor for crystal nephropathies, renal phosphate wasting, and bone loss. Elife. 2020;9:e52709. doi: 10.7554/eLife.52709. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Grases F., Costa-Bauza A., Prieto R.M. Renal lithiasis and nutrition. Nutr. J. 2006;5:23. doi: 10.1186/1475-2891-5-23. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Han H., Segal A.M., Seifter J.L., Dwyer J.T. Nutritional Management of Kidney Stones (Nephrolithiasis) Clin. Nutr. Res. 2015;4:137–152. doi: 10.7762/cnr.2015.4.3.137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43. Lin B.-B., Lin M.-E., Huang R.-H., Hong Y.-K., Lin B.-L., He X.-J. Dietary and lifestyle factors for primary prevention of nephrolithiasis: A systematic review and meta-analysis. BMC Nephrol. 2020;21:267. doi: 10.1186/s12882-020-01925-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Curhan G.C., Willett W.C., Knight E.L., Stampfer M.J. Dietary Factors and the Risk of Incident Kidney Stones in Younger Women: Nurses’ Health Study II. Arch. Intern. Med. 2004;164:885–891. doi: 10.1001/archinte.164.8.885. [PubMed] [CrossRef] [Google Scholar]
45. Grases F., Saez-Torres C., Rodriguez A., Costa-Bauza A., Rodrigo D., Frontera G., Berga F., Fakier S. Urinary Phytate (Myo-Inositol Hexaphosphate) in Healthy School Children and Risk of Nephrolithiasis. J. Ren. Nutr. 2014;24:219–223. doi: 10.1053/j.jrn.2014.03.004. [PubMed] [CrossRef] [Google Scholar]
46. Taylor E.N., Fung T.T., Curhan G.C. DASH-Style Diet Associates with Reduced Risk for Kidney Stones. J. Am. Soc. Nephrol. 2009;20:2253–2259. doi: 10.1681/ASN.2009030276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47. Taylor E.N., Stampfer M.J., Mount D.B., Curhan G.C. DASH-Style Diet and 24-Hour Urine Composition. Clin. J. Am. Soc. Nephrol. 2010;5:2315–2322. doi: 10.2215/CJN.04420510. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Conte A., Pizá P., García-Raja A., Grases F., Costa-Bauza A., Prieto R.M. Urinary lithogen risk test: Usefulness in the evaluation of renal lithiasis treatment using crystallization inhibitors (citrate and phytate) Arch. Esp. Urol. 1999;52:305–310. [PubMed] [Google Scholar]
49. Guimerà J., Martínez A., Bauza J.L., Sanchís P., Pieras E., Grases F. Effect of phytate on hypercalciuria secondary to bone resorption in patients with urinary stones: Pilot study. Urolithiasis. 2022;50:685–690. doi: 10.1007/s00240-022-01357-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50. Grases F., Perelló J., Sanchis P., Isern B., Prieto R.M., Costa-Bauza A., Santiago C., Ferragut M.L., Frontera G. Anticalculus effect of a triclosan mouthwash containing phytate: A double-blind, randomized, three-period crossover trial. J. Periodontal Res. 2009;44:616–621. doi: 10.1111/j.1600-0765.2008.01168.x. [PubMed] [CrossRef] [Google Scholar]
51. Kanis J.A., McCloskey E.V., Johansson H., Cooper C., Rizzoli R., Reginster J.-Y., on behalf of the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2013;24:23–57. doi: 10.1007/s00198-012-2074-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Kontogianni M.D., Melistas L., Yannakoulia M., Malagaris I., Panagiotakos D.B., Yiannakouris N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition. 2009;25:165–171. doi: 10.1016/j.nut.2008.07.019. [PubMed] [CrossRef] [Google Scholar]
53. Kitchin B., Morgan S. Nutritional considerations in osteoporosis. Curr. Opin. Rheumatol. 2003;15:476–480. doi: 10.1097/00002281-200307000-00017. [PubMed] [CrossRef] [Google Scholar]
54. Drake M.T., Clarke B.L., Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. Mayo Clin. 2008;83:1032–1045. doi: 10.4065/83.9.1032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55. Arriero M.D.M., Ramis J.M., Perelló J., Monjo M. Inositol Hexakisphosphate Inhibits Osteoclastogenesis on RAW 264.7 Cells and Human Primary Osteoclasts. PLoS ONE. 2012;7:e43187. doi: 10.1371/journal.pone.0043187. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Fleisch H., Bisaz S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am. J. Physiol. Content. 1962;203:671–675. doi: 10.1152/ajplegacy.1962.203.4.671. [PubMed] [CrossRef] [Google Scholar]
57. Fleish H., Neuman W.F. Mechanisms of calcification: Role of collagen, polyphosphates, and phosphatase. Am. J. Physiol. Content. 1961;200:1296–1300. doi: 10.1152/ajplegacy.1961.200.6.1296. [PubMed] [CrossRef] [Google Scholar]
58. Fleisch H.A., Russell R.G.G., Bisaz S., Mühlbauer R.C., Williams D.A. The Inhibitory Effect of Phosphonates on the Formation of Calcium Phosphate Crystals in vitro and on Aortic and Kidney Calcification in vivo. Eur. J. Clin. Investig. 1970;1:12–18. doi: 10.1111/j.1365-2362.1970.tb00591.x. [PubMed] [CrossRef] [Google Scholar]
59. Fleisch H., Graham R., Russell G., Francis M.D. Diphosphonates Inhibit Hydroxyapatite Dissolution in vitro and Bone Resorption in Tissue Culture and in vivo. Science. 1969;165:1262–1264. doi: 10.1126/science.165.3899.1262. [PubMed] [CrossRef] [Google Scholar]
60. Grases F., Sanchis P., Prieto R.M., Perelló J., López-González Á.A. Effect of Tetracalcium Dimagnesium Phytate on Bone Characteristics in Ovariectomized Rats. J. Med. Food. 2010;13:1301–1306. doi: 10.1089/jmf.2009.0152. [PubMed] [CrossRef] [Google Scholar]
61. Gonzalez A.A.L., Grases F., Mari B., Tomas-Salva M., Rodriguez A. Urinary phytate concentration and risk of fracture determined by the FRAX index in a group of postmenopausal women. Turk. J. Med. Sci. 2019;49:458–463. doi: 10.3906/sag-1806-117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. López-González Á.A., Grases F., Monroy N., Marí B., Vicente-Herrero M.T., Tur F., Perelló J. Protective effect of myo-inositol hexaphosphate (phytate) on bone mass loss in postmenopausal women. Eur. J. Nutr. 2012;52:717–726. doi: 10.1007/s00394-012-0377-6. [PubMed] [CrossRef] [Google Scholar]
63. López-González Á.A., Grases F., Roca P., Mari B., Vicente-Herrero M., Costa-Bauzá A., Sanchis P., Prieto R.M., Perelló J., Freitas T.P., et al. Phytate (myo-Inositol Hexaphosphate) and Risk Factors for Osteoporosis. J. Med. Food. 2008;11:747–752. doi: 10.1089/jmf.2008.0087. [PubMed] [CrossRef] [Google Scholar]
64. López-González Á.A., Grases F., Marí B., Vicente-Herrero M.T., Costa-Bauzá A., Monroy N. Influencia del consumo de fitato sobre la masa ósea en mujeres posmenopáusicas de Mallorca. Reumatol. Clínica. 2011;7:220–223. doi: 10.1016/j.reuma.2010.07.004. [PubMed] [CrossRef] [Google Scholar]
65. Prieto R.M., Fiol M., Perello J., Estruch R., Ros E., Sanchis P., Grases F. Effects of Mediterranean diets with low and high proportions of phytate-rich foods on the urinary phytate excretion. Eur. J. Nutr. 2010;49:321–326. doi: 10.1007/s00394-009-0087-x. [PubMed] [CrossRef] [Google Scholar]
66. Rivas A., Romero A., Mariscal-Arcas M., Monteagudo C., Feriche B., Lorenzo M.L., Olea F. Mediterranean diet and bone mineral density in two age groups of women. Int. J. Food Sci. Nutr. 2012;64:155–161. doi: 10.3109/09637486.2012.718743. [PubMed] [CrossRef] [Google Scholar]
67. Pérez-Rey J., Roncero-Martín R., Rico-Martín S., Rey-Sánchez P., Pedrera-Zamorano J.D., Pedrera-Canal M., López-Espuela F., Lavado-García J.M. Adherence to a Mediterranean Diet and Bone Mineral Density in Spanish Premenopausal Women. Nutrients. 2019;11:555. doi: 10.3390/nu11030555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
68. Calderon-Garcia J.F., Moran J.M., Roncero-Martin R., Rey-Sanchez P., Rodriguez-Velasco F.J., Pedrera-Zamorano J.D. Dietary Habits, Nutrients and Bone Mass in Spanish Premenopausal Women: The Contribution of Fish to Better Bone Health. Nutrients. 2012;5:10–22. doi: 10.3390/nu5010010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. Larvie D., Armah S. Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014. Antioxidants. 2021;10:1104. doi: 10.3390/antiox10071104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Bruins M.J., Van Dael P., Eggersdorfer M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients. 2019;11:85. doi: 10.3390/nu11010085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
71. Li S., Sun W., Zhang D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES) J. Alzheimer’s Dis. 2019;72:1145–1157. doi: 10.3233/JAD-190263. [PubMed] [CrossRef] [Google Scholar]
72. Abdulwaliyu I., Arekemase S.O., Adudu J.A., Batari M.L., Egbule M.N., Okoduwa S.I.R. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clin. Nutr. Exp. 2019;28:42–61. doi: 10.1016/j.yclnex.2019.10.002. [CrossRef] [Google Scholar]
73. Xu Q., Kanthasamy A.G., Reddy M.B. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model. Park. Dis. 2011;2011:431068. doi: 10.4061/2011/431068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74. Rahmati B., Khalili M., Hamoleh-Shalali Z., Roghani M., Baluchnejadmojarad T. Phytic Acid Mitigates Motor Asymmetry in Male Rat with Unilateral 6-Hydroxydopamine Striatal Lesion. J. Basic Clin. Pathophysiol. 2015;3:25–28. doi: 10.22070/JBCP.2015.228. [CrossRef] [Google Scholar]
75. Abe T.K., Taniguchi M. Identification of myo-inositol hexakisphosphate (IP6) as a β-secretase 1 (BACE1) inhibitory molecule in rice grain extract and digest. FEBS Open Bio. 2014;4:162–167. doi: 10.1016/j.fob.2014.01.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Grases F., Simonet B.M., Prieto R.M., March J. Phytate levels in diverse rat tissues: Influence of dietary phytate. Br. J. Nutr. 2001;86:225–231. doi: 10.1079/BJN2001389. [PubMed] [CrossRef] [Google Scholar]
77. Anekonda T.S., Wadsworth T.L., Sabin R., Frahler K., Harris C., Petriko B., Ralle M., Woltjer R., Quinn J.F. Phytic Acid as a Potential Treatment for Alzheimer’s Pathology: Evidence from Animal and in vitro Models. J. Alzheimer’s Dis. 2011;23:21–35. doi: 10.3233/JAD-2010-101287. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78. Cherian L., Wang Y., Fakuda K., Leurgans S., Aggarwal N., Morris M. Mediterranean-Dash Intervention for Neurodegenerative Delay (MIND) Diet Slows Cognitive Decline After Stroke. J. Prev. Alzheimer’s Dis. 2019;6:267–273. doi: 10.14283/jpad.2019.28. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
79. van den Brink A.C., Brouwer-Brolsma E.M., Berendsen A.A.M., Van De Rest O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease—A Review. Adv. Nutr. 2019;10:1040–1065. doi: 10.1093/advances/nmz054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
80. McCormick B., Caulfield L., Richard S., Pendergast L., Murray-Kolb L., MAL-ED Network Investigators Nurturing Environments and Nutrient-Rich Diets May Improve Cognitive Development: Analysis of Cognitive Trajectories from Six to Sixty Months from the MAL-ED Study (OR10-01-19) Curr. Dev. Nutr. 2019;3:nzz034–OR10. doi: 10.1093/cdn/nzz034.OR10-01-19. [CrossRef] [Google Scholar]
81. American Diabetes Association Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin. Diabetes. 2022;40:10–38. doi: 10.2337/cd22-as01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
82. Visseren F.L.J., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Bäck M., Benetos A., Biffi A., Boavida J.-M., Capodanno D., et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484. [PubMed] [CrossRef] [Google Scholar]
83. Zavodnik I.B., Piasecka A., Szosland K., Bryszewska M. Human red blood cell membrane potential and fluidity in glucose solutions. Scand. J. Clin. Lab. Investig. 1997;57:59–63. doi: 10.3109/00365519709057819. [PubMed] [CrossRef] [Google Scholar]
84. Zheng F., Lu W., Jia C., Li H., Wang Z., Jia W. Relationships between glucose excursion and the activation of oxidative stress in patients with newly diagnosed type 2 diabetes or impaired glucose regulation. Endocrine. 2010;37:201–208. doi: 10.1007/s12020-009-9296-6. [PubMed] [CrossRef] [Google Scholar]
85. Peppa M., Vlassara H. Advanced glycation end products and diabetic complications: A General overview. Hormones. 2005;4:28–37. doi: 10.14310/horm.2002.11140. [PubMed] [CrossRef] [Google Scholar]
86. Negre-Salvayre A., Salvayre R., Augé N., Pamplona R., Portero-Otín M. Hyperglycemia and Glycation in Diabetic Complications. Antioxid. Redox Signal. 2009;11:3071–3109. doi: 10.1089/ars.2009.2484. [PubMed] [CrossRef] [Google Scholar]
87. Sözmen E.Y., Sözmen B., Delen Y., Onat T. Catalase/Superoxide Dismutase (SOD) and Catalase/Paraoxonase (PON) Ratios May Implicate Poor Glycemic Control. Arch. Med. Res. 2001;32:283–287. doi: 10.1016/S0188-4409(01)00285-5. [PubMed] [CrossRef] [Google Scholar]
88. Dilworth L., Omoruyi F., Simon O., Morrison E.S.A., Asemota H. The effect of phytic acid on the levels of blood glucose and some enzymes of carbohydrate and lipid metabolism. West Indian Med. J. 2005;54:102–106. doi: 10.1590/S0043-31442005000200003. [PubMed] [CrossRef] [Google Scholar]
89. Berridge M.J., Irvine R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312:315–321. doi: 10.1038/312315a0. [PubMed] [CrossRef] [Google Scholar]
90. Deshpande S.S., Cheryan M. Effects of Phytic Acid, Divalent Cations, and Their Interactions on ?-Amylase Activity. J. Food Sci. 1984;49:516–519. doi: 10.1111/j.1365-2621.1984.tb12456.x. [CrossRef] [Google Scholar]
91. Omoruyi F., Stennett D., Foster S., Dilworth L. New Frontiers for the Use of IP6 and Inositol Combination in Treating Diabetes Mellitus: A Review. Molecules. 2020;25:1720. doi: 10.3390/molecules25071720. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Yuangklang C., Wensing T., Lemmens A.G., Jittakhot S., Beynen A.C. Effect of sodium phytate supplementation on fat digestion and cholesterol metabolism in female rats. J. Anim. Physiol. Anim. Nutr. 2005;89:373–378. doi: 10.1111/j.1439-0396.2005.00525.x. [PubMed] [CrossRef] [Google Scholar]
93. Luthra M., Balasubramanian D. Nonenzymatic glycation alters protein structure and stability. A study of two eye lens crystallins. J. Biol. Chem. 1993;268:18119–18127. doi: 10.1016/S0021-9258(17)46819-0. [PubMed] [CrossRef] [Google Scholar]
94. Liu J., Ru Q., Ding Y. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Res. Int. 2012;49:170–183. doi: 10.1016/j.foodres.2012.07.034. [CrossRef] [Google Scholar]
95. Adrover M., Mariño L., Sanchis P., Pauwels K., Kraan Y., Lebrun P., Vilanova B., Muñoz F., Broersen K., Donoso J. Mechanistic Insights in Glycation-Induced Protein Aggregation. Biomacromolecules. 2014;15:3449–3462. doi: 10.1021/bm501077j. [PubMed] [CrossRef] [Google Scholar]
96. Mariño L., Maya-Aguirre C.A., Pauwels K., Vilanova B., Ortega-Castro J., Frau J., Donoso J., Adrover M. Glycation of Lysozyme by Glycolaldehyde Provides New Mechanistic Insights in Diabetes-Related Protein Aggregation. ACS Chem. Biol. 2017;12:1152–1162. doi: 10.1021/acschembio.6b01103. [PubMed] [CrossRef] [Google Scholar]
97. Oliveira L.M., Lages A., Gomes R.A., Neves H., Família C., Coelho A.V., Quintas A. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem. 2011;12:41. doi: 10.1186/1471-2091-12-41. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98. Oliveira L.M., Gomes R.A., Yang D., Dennison S.R., Família C., Lages A., Coelho A.V., Murphy R.M., Phoenix D.A., Quintas A. Insights into the molecular mechanism of protein native-like aggregation upon glycation. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013;1834:1010–1022. doi: 10.1016/j.bbapap.2012.12.001. [PubMed] [CrossRef] [Google Scholar]
99. Weiss G., Goodnough L.T. Anemia of chronic disease. N. Engl. J. Med. 2005;352:1011–1023. doi: 10.1056/NEJMra041809. [PubMed] [CrossRef] [Google Scholar]
100. Ikenaga T., Kakumoto K., Kohda N., Yamamoto T. Effect of Inositol Hexaphosphate (IP6) on Serum Uric Acid in Hyperuricemic Subjects: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Plant Foods Hum. Nutr. 2019;74:316–321. doi: 10.1007/s11130-019-00735-9. [PubMed] [CrossRef] [Google Scholar]
101. Onomi S., Okazaki Y., Katayama T. Effect of Dietary Level of Phytic Acid on Hepatic and Serum Lipid Status in Rats Fed a High-sucrose Diet. Biosci. Biotechnol. Biochem. 2004;68:1379–1381. doi: 10.1271/bbb.68.1379. [PubMed] [CrossRef] [Google Scholar]
102. Lee S.-H., Park H.-J., Chun H.-K., Cho S.-Y., Cho S.-M., Lillehoj H.S. Dietary phytic acid lowers the blood glucose level in diabetic KK mice. Nutr. Res. 2006;26:474–479. doi: 10.1016/j.nutres.2006.06.017. [CrossRef] [Google Scholar]
103. Kuppusamy A., Muthusamy U., Thirumalaisamy S.A., Varadharajan S., Ramasamy K., Ramanathan S. In vitro (α-glucosidase and α-amylase inhibition) and in vivo antidiabetic property of phytic acid (IP6) in streptozotocin- nicotinamide-induced type 2 diabetes mellitus (NIDDM) in rats. J. Complement. Integr. Med. 2011;8:1–19. doi: 10.2202/1553-3840.1483. [PubMed] [CrossRef] [Google Scholar]
104. Omoruyi F.O., Budiaman A., Eng Y., Olumese F.E., Hoesel J.L., Ejilemele A., Okorodudu A.O. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats. Adv. Pharmacol. Pharm. Sci. 2013;2013:172494. doi: 10.1155/2013/172494. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
105. Foster S.R., Omoruyi F.O., Bustamante J., Lindo R.L.A., Dilworth L.L. The effect of combined inositol hexakisphosphate and inositol supplement in streptozotocin-induced type 2 diabetic rats. Int. J. Exp. Pathol. 2016;97:397–407. doi: 10.1111/iep.12210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Panagiotakos D.B., Tzima N., Pitsavos C., Chrysohoou C., Zampelas A., Toussoulis D., Stefanadis C. The Association between Adherence to the Mediterranean Diet and Fasting Indices of Glucose Homoeostasis: The ATTICA Study. J. Am. Coll. Nutr. 2007;26:32–38. doi: 10.1080/07315724.2007.10719583. [PubMed] [CrossRef] [Google Scholar]
107. Martín-Peláez S., Fito M., Castaner O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients. 2020;12:2236. doi: 10.3390/nu12082236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Chandalia M., Garg A., Lutjohann D., Von Bergmann K., Grundy S.M., Brinkley L.J. Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2000;342:1392–1398. doi: 10.1056/NEJM200005113421903. [PubMed] [CrossRef] [Google Scholar]
109. Venn B.J., Mann J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004;58:1443–1461. doi: 10.1038/sj.ejcn.1601995. [PubMed] [CrossRef] [Google Scholar]
110. Estruch R., Martinez-Gonzalez M.A., Corella D., Salas-Salvadó J., Ruiz-Gutiérrez V., Covas M.I., Fiol M., Gómez-Gracia E., López-Sabater M.C., Vinyoles E., et al. Effects of a Mediterranean-Style Diet on Cardiovascular Risk Factors: A randomized trial. Ann. Intern. Med. 2006;145:1–11. doi: 10.7326/0003-4819-145-1-200607040-00004. [PubMed] [CrossRef] [Google Scholar]
111. Toobert D.J., Glasgow R.E., Strycker L.A., Barrera M., Radcliffe J.L., Wander R.C., Bagdade J.D. Biologic and Quality-of-Life Outcomes From the Mediterranean Lifestyle Program. Diabetes Care. 2003;26:2288–2293. doi: 10.2337/diacare.26.8.2288. [PubMed] [CrossRef] [Google Scholar]
112. Elhayany A., Lustman A., Abel R., Attal-Singer J., Vinker S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: A 1-year prospective randomized intervention study. Diabetes Obes. Metab. 2010;12:204–209. doi: 10.1111/j.1463-1326.2009.01151.x. [PubMed] [CrossRef] [Google Scholar]
113. Mirmiran P., Hosseini S., Hosseinpour-Niazi S., Azizi F. Legume consumption increase adiponectin concentrations among type 2 diabetic patients: A randomized crossover clinical trial. Endocrinol. Diabetes Y Nutr. 2018;66:49–55. doi: 10.1016/j.endinu.2018.07.003. [PubMed] [CrossRef] [Google Scholar]
114. Communication DIABETES MELLITUS|Endocrinología, Diabetes y Nutrición|Endocrinología, Diabetes y Nutrición. [(accessed on 3 December 2022)]. Available online: https://www.elsevier.es/en-revista-endocrinologia-diabetes-nutricion-13-congresos-63-congreso-nacional-sociedad-espanola-148-sesion-diabetes-mellitus-7167-comunicacion-el-consumo-diario-de-fitato-86211
115. Avgerinos K.I., Spyrou N., Mantzoros C.S., Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–135. doi: 10.1016/j.metabol.2018.11.001. [PubMed] [CrossRef] [Google Scholar]
116. Proietti S., Pasta V., Cucina A., Aragona C., Palombi E., Vucenik I., Bizzarri M. Inositol hexaphosphate (InsP6) as an effective topical treatment for patients receiving adjuvant chemotherapy after breast surgery. Eur. Rev. Med. Pharmacol. Sci. 2017;21:43–50. [PubMed] [Google Scholar]
117. Vucenik I., Shamsuddin A.M. Cancer Inhibition by Inositol Hexaphosphate (IP6) and Inositol: From Laboratory to Clinic. J. Nutr. 2003;133:3778S–3784S. doi: 10.1093/jn/133.11.3778S. [PubMed] [CrossRef] [Google Scholar]
118. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] [Google Scholar]
119. Ferry S., Matsuda M., Yoshida H., Hirata M. Inositol hexakisphosphate blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NFkappaB-mediated cell survival pathway. Carcinogenesis. 2002;23:2031–2041. doi: 10.1093/carcin/23.12.2031. [PubMed] [CrossRef] [Google Scholar]
120. Agarwal C., Dhanalakshmi S., Singh R.P., Agarwal R. Inositol Hexaphosphate Inhibits Growth and Induces G1 Arrest and Apoptotic Death of Androgen-Dependent Human Prostate Carcinoma LNCaP Cells. Neoplasia. 2004;6:646–659. doi: 10.1593/neo.04232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
121. Sakamoto K., Venkatraman G., Shamsuddin A.M. Growth inhibition and differentiation of HT-29 cells in vitro by inositol hexaphosphate (phytic acid) Carcinogenesis. 1993;14:1815–1819. doi: 10.1093/carcin/14.9.1815. [PubMed] [CrossRef] [Google Scholar]
122. Yang G.Y., Shamsuddin A.M. IP6-induced growth inhibition and differentiation of HT-29 human colon cancer cells: Involvement of intracellular inositol phosphates. Anticancer Res. 1995;15:2479–2487. [PubMed] [Google Scholar]
123. Shamsuddin A.M., Baten A., Lalwani N.D. Effects of inositol hexaphosphate on growth and differentiation in K-562 erythroleukemia cell line. Cancer Lett. 1992;64:195–202. doi: 10.1016/0304-3835(92)90043-U. [PubMed] [CrossRef] [Google Scholar]
124. Deliliers G.L., Servida F., Fracchiolla N.S., Ricci C., Borsotti C., Colombo G., Soligo D. Effect of inositol hexaphosphate (IP6) on human normal and leukaemic haematopoietic cells. Br. J. Haematol. 2002;117:577–587. doi: 10.1046/j.1365-2141.2002.03453.x. [PubMed] [CrossRef] [Google Scholar]
125. Shamsuddin A.M., Yang G.Y., Vucenik I. Novel anti-cancer functions of IP6: Growth inhibition and differentiation of human mammary cancer cell lines in vitro. Anticancer Res. 1996;16:3287–3292. [PubMed] [Google Scholar]
126. Zi X., Singh R.P., Agarwal R. Impairment of erbB1 receptor and fluid-phase endocytosis and associated mitogenic signaling by inositol hexaphosphate in human prostate carcinoma DU145 cells. Carcinogenesis. 2000;21:2225–2235. doi: 10.1093/carcin/21.12.2225. [PubMed] [CrossRef] [Google Scholar]
127. Shamsuddin A.M., Yang G.-Y. Inositol hexaphosphate inhibits growth and induces differentiation of PC-3 human prostate cancer cells. Carcinogenesis. 1995;16:1975–1979. doi: 10.1093/carcin/16.8.1975. [PubMed] [CrossRef] [Google Scholar]
128. Singh R.P., Agarwal C., Agarwal R. Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: Modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis. 2003;24:555–563. doi: 10.1093/carcin/24.3.555. [PubMed] [CrossRef] [Google Scholar]
129. Vucenik I., Tantivejkul K., Zhang Z.S., Cole K.E., Saied I., Shamsuddin A.M. IP6 in treatment of liver cancer. I. IP6 inhibits growth and reverses transformed phenotype in HepG2 human liver cancer cell line. Anticancer Res. 1999;18:4083–4090. [PubMed] [Google Scholar]
130. Vucenik I., Tomazic V.J., Fabian D., Shamsuddin A.M. Antitumor activity of phytic acid (inositol hexaphosphate) in murine transplanted and metastatic fibrosarcoma, a pilot study. Cancer Lett. 1992;65:9–13. doi: 10.1016/0304-3835(92)90206-B. [PubMed] [CrossRef] [Google Scholar]
131. Vucenik I., Kalebic T., Tantivejkul K., Shamsuddin A.M. Novel anticancer function of inositol hexaphosphate: Inhibition of human rhabdomyosarcoma in vitro and in vivo. Anticancer Res. 1998;18:1377–1384. [PubMed] [Google Scholar]
132. Markiewicz L., Ogrodowczyk A., Wiczkowski W., Wróblewska B. Phytate and Butyrate Differently Influence the Proliferation, Apoptosis and Survival Pathways in Human Cancer and Healthy Colonocytes. Nutrients. 2021;13:1887. doi: 10.3390/nu13061887. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. Shamsuddin A.M., Elsayed A.M., Ullah A. Suppression of large intestinal cancer in F344 rats by inositol hexaphosphate. Carcinogenesis. 1988;9:577–580. doi: 10.1093/carcin/9.4.577. [PubMed] [CrossRef] [Google Scholar]
134. Shamsuddin A.M., Ullah A., Chakravarthy A.K. Inositol and inositol hexaphosphate suppress cell proliferation and tumor formation in CD-1 mice. Carcinogenesis. 1989;10:1461–1463. doi: 10.1093/carcin/10.8.1461. [PubMed] [CrossRef] [Google Scholar]
135. Shamsuddin A.M., Ullah A. Inositol hexaphosphate inhibits large intestinal cancer in F344 rats 5 months after induction by azoxymethane. Carcinogenesis. 1989;10:625–626. doi: 10.1093/carcin/10.3.625. [PubMed] [CrossRef] [Google Scholar]
136. Nelson R.L., Yoo S.J., Tanure J.C., Andrianopoulos G., Misumi A. The effect of iron on experimental colorectal carcinogenesis. Anticancer Res. 1989;9:1477–1482. [PubMed] [Google Scholar]
137. Pretlow T.P., O’Riordan M.A., Somich G.A., Amini S.B., Pretlow T.G. Aberrant crypts correlate with tumor incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis. 1992;13:1509–1512. doi: 10.1093/carcin/13.9.1509. [PubMed] [CrossRef] [Google Scholar]
138. Shivapurkar N., Tang Z., Frost A., Alabaster O. A rapid dual organ rat carcinogenesis bioassay for evaluating the chemoprevention of breast and colon cancer. Cancer Lett. 1996;100:169–179. doi: 10.1016/0304-3835(95)04097-8. [PubMed] [CrossRef] [Google Scholar]
139. Challa A., Rao D.R., Reddy B.S. Interactive suppression of aberrant crypt foci induced by azoxymethane in rat colon by phytic acid and green tea. Carcinogenesis. 1997;18:2023–2026. doi: 10.1093/carcin/18.10.2023. [PubMed] [CrossRef] [Google Scholar]
140. Jenab M., Thompson L.U. Phytic acid in wheat bran affects colon morphology, cell differentiation and apoptosis. Carcinogenesis. 2000;21:1547–1552. doi: 10.1093/carcin/21.8.1547. [PubMed] [CrossRef] [Google Scholar]
141. Thompson L.U., Zhang L. Phytic acid and minerals: Effect on early markers of risk for mammary and colon carcinogenesis. Carcinogenesis. 1991;12:2041–2045. doi: 10.1093/carcin/12.11.2041. [PubMed] [CrossRef] [Google Scholar]
142. Vucenik I., Zhang Z.S., Shamsuddin A.M. IP6 in treatment of liver cancer. II. Intra-tumoral injection of IP6 regresses pre-existing human liver cancer xenotransplanted in nude mice. Anticancer Res. 1999;18:4091–4096. [PubMed] [Google Scholar]
143. Hirose M., Ozaki K., Takaba K., Fukushima S., Shirai T., Ito N., Nobuyuki I. Modifying effects of the naturally occurring antioxidants γ-oryzanol, phytic acid, tannic acid and n-tritriacontane-16,18-dione in a rat wide-spectrum organ carcinogenesis model. Carcinogenesis. 1991;12:1917–1921. doi: 10.1093/carcin/12.10.1917. [PubMed] [CrossRef] [Google Scholar]
144. Estensen R.D., Wattenberg L.W. Studies of chemopreventive effects of myo-inositol on benzo(a)pyrene-induced neoplasia of the lung and forestomach of female A/J mice. Carcinogenesis. 1993;14:1975–1977. doi: 10.1093/carcin/14.9.1975. [PubMed] [CrossRef] [Google Scholar]
145. Wattenberg L. Chalcones, myo-inositol and other novel inhibitors of pulmonary carcinogenesis. J. Cell. Biochem. 1995;59:162–168. doi: 10.1002/jcb.240590821. [PubMed] [CrossRef] [Google Scholar]
146. Vucenik I., Sakamoto K., Bansal M., Shamsuddin A.M. Inhibition of rat mammary carcinogenesis by inositol hexaphosphate (phytic acid). A pilot study. Cancer Lett. 1993;75:95–102. doi: 10.1016/0304-3835(93)90193-D. [PubMed] [CrossRef] [Google Scholar]
147. Vucenik I., Yang G.-Y., Shamsuddin A.M. Inositol hexaphosphate and inositol inhibit DMBA-induced rat mammary cancer. Carcinogenesis. 1995;16:1055–1058. doi: 10.1093/carcin/16.5.1055. [PubMed] [CrossRef] [Google Scholar]
148. Ishikawa T., Nakatsuru Y., Zarkovic M., Shamsuddin A.M. Inhibition of skin cancer by IP6 in vivo: Initiation-promotion model. Anticancer Res. 2000;19:3749–3752. [PubMed] [Google Scholar]
149. Jagadeesh S., Banerjee P.P. Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKCα Biochem. Biophys. Res. Commun. 2006;349:1361–1367. doi: 10.1016/j.bbrc.2006.09.002. [PubMed] [CrossRef] [Google Scholar]
150. Vucenik I., Yang G., Shamsuddin A.M. Comparison of pure inositol hexaphosphate and high-bran diet in the prevention of DMBA-induced rat mammary carcinogenesis. Nutr. Cancer. 1997;28:7–13. doi: 10.1080/01635589709514546. [PubMed] [CrossRef] [Google Scholar]
151. Mentella M.C., Scaldaferri F., Ricci C., Gasbarrini A., Miggiano G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients. 2019;11:2059. doi: 10.3390/nu11092059. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
152. Minihan A.K., Patel A.V., Flanders W.D., Sauer A.G., Jemal A., Islami F. Proportion of Cancer Cases Attributable to Physical Inactivity by US State, 2013–2016. Med. Sci. Sports Exerc. 2021;54:417–423. doi: 10.1249/MSS.0000000000002801. [PubMed] [CrossRef] [Google Scholar]
153. Lauby-Secretan B., Scoccianti C., Loomis D., Grosse Y., Bianchini F., Straif K. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016;375:794–798. doi: 10.1056/NEJMsr1606602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
154. Key T.J., Bradbury K.E., Perez-Cornago A., Sinha R., Tsilidis K.K., Tsugane S. Diet, nutrition, and cancer risk: What do we know and what is the way forward? BMJ. 2020;368:m511. doi: 10.1136/bmj.m511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Papadimitriou N., Markozannes G., Kanellopoulou A., Critselis E., Alhardan S., Karafousia V., Kasimis J.C., Katsaraki C., Papadopoulou A., Zografou M., et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021;12:4579. doi: 10.1038/s41467-021-24861-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
156. Buckland G., Travier N., Cottet V., González C.A., Lujan-Barroso L., Agudo A., Trichopoulou A., Lagiou P., Trichopoulos D., Peeters P., et al. Adherence to the mediterranean diet and risk of breast cancer in the European prospective investigation into cancer and nutrition cohort study. Int. J. Cancer. 2012;132:2918–2927. doi: 10.1002/ijc.27958. [PubMed] [CrossRef] [Google Scholar]
157. Trichopoulou A., Costacou T., Bamia C., Trichopoulos D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003;348:2599–2608. doi: 10.1056/NEJMoa025039. [PubMed] [CrossRef] [Google Scholar]
158. Castelló A., Researchers O.B.O.M.-S., Amiano P., de Larrea N.F., Martín V., Alonso M.H., Castaño-Vinyals G., Pérez-Gómez B., Olmedo-Requena R., Guevara M., et al. Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. Eur. J. Nutr. 2018;58:1495–1505. doi: 10.1007/s00394-018-1674-5. [PubMed] [CrossRef] [Google Scholar]
159. Schneider L., Su L.J., Arab L., Bensen J.T., Farnan L., Fontham E.T.H., Song L., Hussey J., Merchant A.T., Mohler J.L., et al. Dietary patterns based on the Mediterranean diet and DASH diet are inversely associated with high aggressive prostate cancer in PCaP. Ann. Epidemiol. 2019;29:16–22.e1. doi: 10.1016/j.annepidem.2018.08.012. [PubMed] [CrossRef] [Google Scholar]
160. Kenfield S.A., Dupre N., Richman E.L., Stampfer M.J., Chan J.M., Giovannucci E.L. Mediterranean Diet and Prostate Cancer Risk and Mortality in the Health Professionals Follow-up Study. Eur. Urol. 2014;65:887–894. doi: 10.1016/j.eururo.2013.08.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
161. Praud D., Bertuccio P., Bosetti C., Turati F., Ferraroni M., La Vecchia C. Adherence to the Mediterranean diet and gastric cancer risk in Italy. Int. J. Cancer. 2013;134:2935–2941. doi: 10.1002/ijc.28620. [PubMed] [CrossRef] [Google Scholar]
162. Bravi F., Spei M.-E., Polesel J., Di Maso M., Montella M., Ferraroni M., Serraino D., Libra M., Negri E., La Vecchia C., et al. Mediterranean Diet and Bladder Cancer Risk in Italy. Nutrients. 2018;10:1061. doi: 10.3390/nu10081061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
163. Filomeno M., Bosetti C., Garavello W., Levi F., Galeone C., Negri E., La Vecchia C. The role of a Mediterranean diet on the risk of oral and pharyngeal cancer. Br. J. Cancer. 2014;111:981–986. doi: 10.1038/bjc.2014.329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
164. Rosato V., Polesel J., Bosetti C., Serraino D., Negri E., La Vecchia C. Population Attributable Risk for Pancreatic Cancer in Northern Italy. Pancreas. 2015;44:216–220. doi: 10.1097/MPA.0000000000000251. [PubMed] [CrossRef] [Google Scholar]
165. Anic G.M., Park Y., Subar A.F., Schap T.E., Reedy J. Index-based dietary patterns and risk of lung cancer in the NIH–AARP diet and health study. Eur. J. Clin. Nutr. 2015;70:123–129. doi: 10.1038/ejcn.2015.122. [PubMed] [CrossRef] [Google Scholar]
166. Onstad M.A., Schmandt R.E., Lu K.H. Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment. J. Clin. Oncol. 2016;34:4225–4230. doi: 10.1200/JCO.2016.69.4638. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
167. Aguilera J.M. The food matrix: Implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 2018;59:3612–3629. doi: 10.1080/10408398.2018.1502743. [PubMed] [CrossRef] [Google Scholar]
168. Graf E., Eaton J.W. Dietary suppression of colonic cancer. Fiber or phytate? Cancer. 1985;56:717–718. doi: 10.1002/1097-0142(19850815)56:4<717::AID-CNCR2820560402>3.0.CO;2-4. [PubMed] [CrossRef] [Google Scholar]
169. Wiśniewski K., Jozwik M., Wojtkiewicz J. Cancer Prevention by Natural Products Introduced into the Diet—Selected Cyclitols. Int. J. Mol. Sci. 2020;21:8988. doi: 10.3390/ijms21238988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
170. Lam S., McWilliams A., Leriche J., MacAulay C., Wattenberg L., Szabo E. A Phase I Study of myo-Inositol for Lung Cancer Chemoprevention. Cancer Epidemiol. Biomark. Prev. 2006;15:1526–1531. doi: 10.1158/1055-9965.EPI-06-0128. [PubMed] [CrossRef] [Google Scholar]
171. Lam S., Mandrekar S.J., Gesthalter Y., Ziegler K.L.A., Seisler D.K., Midthun D.E., Mao J.T., Aubry M.C., McWilliams A., Sin D.D., et al. A Randomized Phase IIb Trial of myo-Inositol in Smokers with Bronchial Dysplasia. Cancer Prev. Res. 2016;9:906–914. doi: 10.1158/1940-6207.CAPR-15-0254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
172. Bačić I., Družijanić N., Karlo R., Škifić I., Jagić S. Efficacy of IP6 + inositol in the treatment of breast cancer patients receiving chemotherapy: Prospective, randomized, pilot clinical study. J. Exp. Clin. Cancer Res. 2010;29:12–15. doi: 10.1186/1756-9966-29-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
173. Baten A., Ullah A., Tomazic V.J., Shamsuddin A.M. Inositol-phosphate-induced enhancement of natural killer cell activity correlates with tumor suppression. Carcinogenesis. 1989;10:1595–1598. doi: 10.1093/carcin/10.9.1595. [PubMed] [CrossRef] [Google Scholar]
174. Zhang Z., Song Y., Wang X.-L. Inositol hexaphosphate-induced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats. World J. Gastroenterol. 2005;11:5044–5046. doi: 10.3748/wjg.v11.i32.5044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
175. Khurana S., Baldeo C., Joseph R.W. Inositol hexaphosphate plus inositol induced complete remission in stage IV melanoma: A case report. Melanoma Res. 2019;29:322–324. doi: 10.1097/CMR.0000000000000577. [PubMed] [CrossRef] [Google Scholar]
176. Nassar R.I., Nassar M. Antimicrobial effect of phytic acid on Enterococcus faecalis. Int. Arab. J. Antimicrob. Agents. 2016;6:1–7. doi: 10.3823/796. [CrossRef] [Google Scholar]
177. Kim N.H., Rhee M.S. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains. Appl. Environ. Microbiol. 2016;82:1040–1049. doi: 10.1128/AEM.03307-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
178. Yadav A.K., Sirohi P., Saraswat S., Rani M., Singh M.P., Srivastava S., Singh N.K. Inhibitory Mechanism on Combination of Phytic Acid with Methanolic Seed Extract of Syzygium cumini and Sodium Chloride over Bacillus subtilis. Curr. Microbiol. 2018;75:849–856. doi: 10.1007/s00284-018-1457-5. [PubMed] [CrossRef] [Google Scholar]
179. Otake T., Shimonaka H., Kanai M., Miyano K., Ueba N., Kunita N., Kurimura T. Inhibitory Effect of Inositol Hexasulfate and Inositol Hexaphosphoric Acid (Phytic acid) on the Proliferation of the Human Immunodeficiency Virus (HIV) in vitro. Kansenshogaku Zasshi. 1989;63:676–683. doi: 10.11150/kansenshogakuzasshi1970.63.676. [PubMed] [CrossRef] [Google Scholar]
180. Rungratanawanich W., Qu Y., Wang X., Essa M.M., Song B.-J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021;53:168–188. doi: 10.1038/s12276-021-00561-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
181. Stodolak B., Starzyńska A., Czyszczoń M., Żyła K. The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chem. 2007;101:1041–1045. doi: 10.1016/j.foodchem.2006.02.061. [CrossRef] [Google Scholar]
182. Trela B.C. Iron Stabilization with Phytic Acid in Model Wine and Wine. Am. J. Enol. Vitic. 2010;61:253–259. doi: 10.5344/ajev.2010.61.2.253. [CrossRef] [Google Scholar]
183. Xie Y., Luo H., Duan J., Hong C., Ma P., Li G., Zhang T., Wu T., Ji G. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L. Fitoterapia. 2014;93:216–225. doi: 10.1016/j.fitote.2014.01.013. [PubMed] [CrossRef] [Google Scholar]
184. Nordbö H., Rölla G. Desorption of Salivary Proteins from Hydroxyapatite by Phytic Acid and Glycerophosphate and the Plaque-Inhibiting Effect of the Two Compounds In Vivo. J. Dent. Res. 1972;51:800–802. doi: 10.1177/00220345720510031701. [PubMed] [CrossRef] [Google Scholar]
185. Nassar R., Nassar M., Vianna M.E., Naidoo N., Alqutami F., Kaklamanos E.G., Senok A., Williams D. Antimicrobial Activity of Phytic Acid: An Emerging Agent in Endodontics. Front. Cell. Infect. Microbiol. 2021;11:753649. doi: 10.3389/fcimb.2021.753649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
186. Wang R., Guo S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021;20:2081–2105. doi: 10.1111/1541-4337.12714. [PubMed] [CrossRef] [Google Scholar]
187. Brouns F. Phytic Acid and Whole Grains for Health Controversy. Nutrients. 2021;14:25. doi: 10.3390/nu14010025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
188. López-Moreno M., Garcés-Rimón M., Miguel M. Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? J. Funct. Foods. 2022;89:104938. doi: 10.1016/j.jff.2022.104938. [CrossRef] [Google Scholar]
189. Reddy M.B., Hurrell R.F., Juillerat M.A., Cook J.D. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am. J. Clin. Nutr. 1996;63:203–207. doi: 10.1093/ajcn/63.2.203. [PubMed] [CrossRef] [Google Scholar]
190. Hurrell R., Egli I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010;91:1461S–1467S. doi: 10.3945/ajcn.2010.28674F. [PubMed] [CrossRef] [Google Scholar]
191. Castro-Alba V., Lazarte C.E., Bergenståhl B., Granfeldt Y. Phytate, iron, zinc, and calcium content of common Bolivian foods and their estimated mineral bioavailability. Food Sci. Nutr. 2019;7:2854–2865. doi: 10.1002/fsn3.1127. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
192. Fredlund K., Isaksson M., Rossander-Hulthén L., Almgren A., Sandberg A.-S. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. J. Trace Elements Med. Biol. 2006;20:49–57. doi: 10.1016/j.jtemb.2006.01.003. [PubMed] [CrossRef] [Google Scholar]
193. Miller L.V., Hambidge K.M., Krebs N.F. Zinc Absorption Is Not Related to Dietary Phytate Intake in Infants and Young Children Based on Modeling Combined Data from Multiple Studies. J. Nutr. 2015;145:1763–1769. doi: 10.3945/jn.115.213074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
194. Hoppe M., Ross A.B., Svelander C., Sandberg A.-S., Hulthén L. Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: A 12-week, randomized, parallel-design intervention study. Eur. J. Nutr. 2018;58:853–864. doi: 10.1007/s00394-018-1722-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
195. Mendoza C., Viteri F.E., Lönnerdal B., Young K.A., Raboy V., Brown K.H. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. Am. J. Clin. Nutr. 1998;68:1123–1127. doi: 10.1093/ajcn/68.5.1123. [PubMed] [CrossRef] [Google Scholar]
196. Mendoza C., Viteri F.E., Lönnerdal B., Raboy V., Young K.A., Brown K.H. Absorption of iron from unmodified maize and genetically altered, low-phytate maize fortified with ferrous sulfate or sodium iron EDTA. Am. J. Clin. Nutr. 2001;73:80–85. doi: 10.1093/ajcn/73.1.80. [PubMed] [CrossRef] [Google Scholar]
197. Grases F., Simonet B.M., Prieto R.M., March J.G. Dietary phytate and mineral bioavailability. J. Trace Elements Med. Biol. 2001;15:221–228. doi: 10.1016/S0946-672X(01)80037-7. [PubMed] [CrossRef] [Google Scholar]
198. Cullumbine H., Basnayake V., Wickramanayake T.W. Mineral Metabolism on Rice Diets. Br. J. Nutr. 1950;4:101–111. doi: 10.1079/BJN19500025. [PubMed] [CrossRef] [Google Scholar]
199. Walker A.R.P., Fox F.W., Irving J.T. Studies in human mineral metabolism: 1. The effect of bread rich in phytate phosphorus on the metabolism of certain mineral salts with special reference to calcium. Biochem. J. 1948;42:452–462. doi: 10.1042/bj0420452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
200. Grases F., Costa-Bauzá A., Berga F., Rodríguez A., Gomila R., Martorell G., Martínez-Cignoni M. Evaluation of inositol phosphates in urine after topical administration of myo-inositol hexaphosphate to female Wistar rats. Life Sci. 2018;192:33–37. doi: 10.1016/j.lfs.2017.11.023. [PubMed] [CrossRef] [Google Scholar]
201. Grases F., Simonet B., March J., Prieto R. Inositol hexakisphosphate in urine: The relationship between oral intake and urinary excretion. Br. J. Urol. 2000;85:138–142. doi: 10.1046/j.1464-410x.2000.00324.x. [PubMed] [CrossRef] [Google Scholar]
202. Grases F., Simonet B.M., Vucenik I., Prieto R.M., Costa-Bauzá A., March J.G., Shamsuddin A.M. Absorption and excretion of orally administered inositol hexaphosphate (IP6or phytate) in humans. BioFactors. 2001;15:53–61. doi: 10.1002/biof.5520150105. [PubMed] [CrossRef] [Google Scholar]
203. Schlemmer U., Frølich W., Prieto R.M., Grases F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009;53:S330–S375. doi: 10.1002/mnfr.200900099. [PubMed] [CrossRef] [Google Scholar]
204. Grases F., Simonet B.M., Prieto R.M., March J.G. Variation of InsP4,InsP5 and InsP6 levels in tissues and biological fluids depending on dietary phytate. J. Nutr. Biochem. 2001;12:595–601. doi: 10.1016/S0955-2863(01)00178-4. [PubMed] [CrossRef] [Google Scholar]