検定をする

 個人的には自由度の高さからRでやっていますがプログラムが面倒なのでできる範囲はEZRでいいかもしれません。ただ、EZRでできない部分もありますので悩むところです・・・。検定をしてp<0.05になると数学的には差があると言われます。でも、サンプルを何倍とかし続けるとp<0.05にいつかなります(たぶん)。それでは差があっても微妙な差しかないかもしれません。
 データにどんな意味があって、どんな数理モデルで近似するのが良いかを考えましょう。

 P値が出て有意差がある?有意差はどこからが有意差?など考えることがいろいろあります。P値が有意かどうかというのもあくまでも仮定としておいた数理モデルに当てはまりが良いかどうかでしかなく、実際に調べたい現象が有意かどうかを言っているわけではありません。

教科書的によく出てくるMann-WhitneyのU検定

よく使うWelchのt検定とあまり名前を聞かないBrunner-Munzel検定

並べかえBrunner-Munzel検定という衝撃

並び替え検定って何をしているの?

クロス集計表に悩む(χ2検定)

最後に、p値を探すのはやめましょう。適切なモデリングをしないと誤差が大きくなり、意味のないp値を探す作業になります。社会的にも科学的にも意味がありません。

いいなと思ったら応援しよう!