ガロア体の逆行列計算

ピーターソン法で逆行列を求めないといけないが、どの程度の計算資源が必要かについて。

まず掃き出し法計算で求められるのか確認しておく。

$$
\begin{pmatrix}
\alpha^{14} & \alpha^{13} & 1 \\
\alpha^{13} & 1 & \alpha^{11} \\
1 & \alpha^{11} & \alpha^{5} \\
\end{pmatrix}
$$

の逆行列を求める。

$$
\left(
\begin{array}{ccc|ccc}
\alpha^{14} & \alpha^{13} & 1 & 1 & 0 & 0\\ 
\alpha^{13} & 1 & \alpha^{11} & 0 & 1 & 0 \\
1 & \alpha^{11} & \alpha^{5}   & 0 & 0 & 1\\
\end{array}
\right)
\rightarrow
\left(
\begin{array}{ccc|ccc}
1 & \alpha^{14} & \alpha^{1} & \alpha^{1} & 0 & 0\\ 
\alpha^{13} & 1 & \alpha^{11} & 0 & 1 & 0 \\
1 & \alpha^{11} & \alpha^{5}   & 0 & 0 & 1\\
\end{array}
\right)
\\

\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   \alpha^{14}              & \alpha^{1}          & \alpha^{1} & 0 & 0 \\ 
0 & 1 + \alpha^{12} & \alpha^{11}+\alpha^{14} & \alpha^{14} & 1 & 0 \\
0 & \alpha^{11}+\alpha^{14} & \alpha^{5}+\alpha^{1} &  \alpha^{1} & 0 & 1\\
\end{array}
\right)
\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   \alpha^{14} & \alpha^{1}  & \alpha^{1} & 0 & 0 \\ 
0 &  \alpha^{11} & \alpha^{10}  & \alpha^{14} & 1 & 0 \\
0 & \alpha^{10} & \alpha^{2} &  \alpha^{1} & 0 & 1\\
\end{array}
\right)
\\

\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   \alpha^{14} & \alpha^{1}  & \alpha^{1} & 0 & 0 \\ 
0 &  1 & \alpha^{14}  & \alpha^{3} & \alpha^{4} & 0 \\
0 & \alpha^{10} & \alpha^{2} &  \alpha^{1} & 0 & 1\\
\end{array}
\right)
\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   0 & \alpha^{1}+\alpha^{13}  & \alpha^{1}+\alpha^{2} & \alpha^{3} & 0 \\ 
0 &  1 & \alpha^{14}  & \alpha^{3} & \alpha^{4} & 0 \\
0 & 0 & \alpha^{2}+\alpha^{9} &  \alpha^{1}+\alpha^{13} & \alpha^{14} & 1\\
\end{array}
\right)
\\

\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   0 & \alpha^{12}  & \alpha^{5} & \alpha^{3} & 0 \\ 
0 &  1 & \alpha^{14}  & \alpha^{3} & \alpha^{4} & 0 \\
0 & 0 & \alpha^{11} &  \alpha^{12} & \alpha^{14} & 1\\
\end{array}
\right)
\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   0 & \alpha^{12}  & \alpha^{5} & \alpha^{3} & 0 \\ 
0 &  1 & \alpha^{14}  & \alpha^{3} & \alpha^{4} & 0 \\
0 & 0 & 1 &  \alpha^{1} & \alpha^{3} & \alpha^{4}\\
\end{array}
\right)
\\

\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   0 & 0  & \alpha^{5} + \alpha^{13} & \alpha^{3} + 1 & \alpha^{1} \\ 
0 &  1 & 0  & \alpha^{3} + 1 & \alpha^{4} + \alpha^{2} & \alpha^{3} \\
0 &  0 & 1 &  \alpha^{1} & \alpha^{3} & \alpha^{4}\\
\end{array}
\right)
\rightarrow
\left(
\begin{array}{ccc|ccc}
1 &   0 & 0  & \alpha^{7} & \alpha^{14} & \alpha^{1} \\ 
0 &  1 & 0  & \alpha^{14} & \alpha^{10} & \alpha^{3} \\
0 &  0 & 1 &  \alpha^{1} & \alpha^{3} & \alpha^{4}\\
\end{array}
\right)
$$

したがって逆行列

$$
\begin{pmatrix}
\alpha^{7} & \alpha^{14} & \alpha^{1} \\ 
\alpha^{14} & \alpha^{10} & \alpha^{3} \\
\alpha^{1} & \alpha^{3} & \alpha^{4}\\
\end{pmatrix}
$$

を得た。検算すると

$$
\begin{pmatrix}
\alpha^{14} & \alpha^{13} & 1 \\
\alpha^{13} & 1 & \alpha^{11} \\
1 & \alpha^{11} & \alpha^{5} \\
\end{pmatrix}
\begin{pmatrix}
\alpha^{7} & \alpha^{14} & \alpha^{1} \\ 
\alpha^{14} & \alpha^{10} & \alpha^{3} \\
\alpha^{1} & \alpha^{3} & \alpha^{4}\\
\end{pmatrix}
=
\begin{pmatrix}
\alpha^{6}+\alpha^{12}+\alpha^{1} 
& \alpha^{13}+\alpha^{8}+\alpha^{3}
& 1+\alpha^{1}+\alpha^{4} \\ 
\alpha^{5}+\alpha^{14}+\alpha^{12}
& \alpha^{12}+\alpha^{10}+\alpha^{14}
& \alpha^{14}+\alpha^{3}+1 \\
\alpha^{7}+\alpha^{10}+\alpha^{6}
& \alpha^{14}+\alpha^{6}+\alpha^{8}
& \alpha^{1}+\alpha^{14}+\alpha^{9}\\
\end{pmatrix}
=E
$$

いいなと思ったら応援しよう!