数学をことばにしよう:三次方程式と等比数列
鈴木貫太郎さんの動画です。今回も数学をことばにして、解説してみます。
(x-4)(x-α)(x-β)=0, 解と係数の関係から6=-(4+α+β), β=-10-α
等比数列ar^n, ar^n+1, ar^n+2の関係は、ar^n・ar^n+2=(ar^n+1)^2
4,α,βの順番の組み合わせを検討してみると
α(-10-α)=16のみ実数解をもつ
よって、 α^2+10α+16=0, (α+2)(α+8)=0, α=-2,-8, つまり実数解は-2,4,-8
解と係数の関係から、q=64, -p=-8+16-32=-24, p=24が解答
連続する等比数列3項の関係については、試してみればすぐにわかりますね。試してみること、ホント、大事ですね。
勉強になりました!
(了)
いいなと思ったら応援しよう!
よりよい社会をみなさんと、よりよい「コミュニケーション」を通じてつくることを目指しています。これからも頑張ります。よろしければサポートのほど、お願いいたします!