LlamaIndexを使用したマルチエージェント、マルチファンクションフレームワークの実装
元ネタ: Implementing a Multi-Agent, Multi-Function framework with LlamaIndex | by Phil | Apr, 2024 | Medium
LlamaIndexを使用したマルチエージェント、マルチファンクションフレームワークの実装
エンジニア-1: 1人のエージェントに複数のツールを与えて複数の機能を呼び出すと、精度が低下する上、ハルシネーションが増加すると聞きました。1つの機能ごとに1つのエージェントを使用することは可能ですか?その実装方法を教えてください。
エンジニア-2: はい、可能です。各機能ごとに1つのエージェントを定義し、その後、トップレベルのリトリーバー対応の親エージェントを使用します。
このフレームワークを実装するためには、以下の5つの簡単な手順に従ってください。
Githubで完全なコードはここを参照! Full Code
1. RAGを含む個別の関数を定義する
個別の関数を作成することで、それぞれの独立性(Modularity)が確保されます。各関数は独立して構築およびテストでき、保守性が向上し、堅牢性が促進されます。Re-Ranker機能やクエリ変換などを使用してRAGシステムをかなり複雑に構築することができます。
2. 各機能に対する機能ツールの設定
LlamaIndexのエージェントを使用する際には、各機能に対して個別のツールを作成することが重要です。このアプローチにより、独立性(Modularity)が確保され、独立した開発、テスト、およびメンテナンスが可能となります。単一の多機能ツールではこの細かさが損なわれます。
3. 各機能ツールごとにエージェントを定義する
ここからがユニークがポイントです。この段階でエージェントに明確なシステムプロンプトを提供することが重要です。提供することにより、クエリに対するコンテキストと期待値が設定され、エージェントが専門的な役割を理解し、正確な応答のために指定されたツールを使用することが保証されます。
4. エージェント辞書を作成し、各エージェントをツールとして定義する
この段階では、マルチエージェントフレームワーク用のエージェントの辞書を作成し、各エージェントにツールを割り当て、これらのツールを効率的なクエリ処理のためにノードにマッピングします。
ツールのメタデータを定義することは重要です。なぜなら、それは各ツールのコンテキストと説明を提供し、開発者がその目的を理解するのに役立つからです。ツールをノードにマッピングすることで、マルチエージェントフレームワーク内での効率的なルーティングが可能となり、シームレスなクエリ処理が可能となります。️
5. オブジェクトインデックスとトップレベルエージェントの作成
ここでは、以下のことを行います:
オブジェクトインデックスの作成:
メタデータやツールノードのマッピングを含む指定されたツールからオブジェクトインデックスを構築します。
リトリーバーのインスタンス化:
オブジェクトインデックスを使用してリトリーバーを作成し、ユーザークエリに基づいて関連エージェントを効率的に取得できるようにします。
トップレベルエージェントの作成:
リトリーバーを使用してトップレベルエージェントをインスタンス化します。このエージェントは、ユーザークエリに基づいて最適なエージェントを動的に選択します。
FnRetrieverOpenAIAgent は、エージェントの取得に優れており、適切なツールを選択して仕事を行い、正確でコンテキストに適した応答を確実にします。
結論
全体として、このマルチエージェントフレームワークは、異なる機能に特化したエージェントを備えており、ドメインの専門知識を活用して精度を提供しています。各エージェントは特定のタスクに焦点を当て、正確な応答を確保しています。ただし、ユーザーのクエリを適切なエージェントにマッピングするためのリトリーバルメカニズムの設計には複雑さが生じます。正確さと複雑さのバランスが、効果的なマルチエージェントシステムの鍵です。こちらからフルコードをご覧いただけます。