平均値と中央値の差の絶対値は標準偏差以下
データにおいて、平均値と中央値がある程度離れた値になる、ということはよくあります。例えば、外れ値の多いデータでは、平均値と中央値の差が大きくなります。その理由の$${1}$$つとして、「平均値は外れ値の影響を受けやすく、中央値はその影響を受けにくい」が挙げられます。この事情により、外れ値の多いデータにおける代表値としては、平均値より中央値の方が適切、と考える人が多いです。
とこで、平均値と中央値はどれくらい離れることができるのでしょうか?上記の定理は、その回答を与えています。平均値と中央値の差の絶対値が標準偏差よりも大きくなることはありません。
定理の証明ですが、次の通りです。ものすごく凝縮して記述しています。
さて、この定理に関連する問題を出題しておきましょう。ぜひ考えてみてください。
ツイッターにて、この問題をアンケート形式で出題しました。結果は次の通りでした。さあ、正解は「はい」「いいえ」、どっちでしょうか?
正解は「いいえ」です。
(1) 偏差値は、得点データを平均=$${50}$$、標準偏差=$${10}$$となるように変換したもの。
(2) 平均値と中央値の差の絶対値は標準偏差以下となる(冒頭に紹介した定理)。
の2点に注意すれば、偏差値の中央値$${m}$$が$${40 \leqq m \leqq 60}$$の範囲に入ると分かります。従って、$${m}$$が$${61}$$になることはありません。
■神戸大学の丸山祐造先生(@umaruyama)の投稿を参考リンクとして貼っておきます。