
Hamiltomの正準方程式の導出
一般に3通りの方法が示されている。
1 Langrange's eq からの導出
$${\mathscr{L}=\mathscr{L}(\{\dot{q_i}\},\{q_i\})}$$、$${\mathscr{H}=\mathscr{H}(\{p_i\},\{q_i\})}$$
$${d\mathscr{L}=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}d\dot{q_i}+\dfrac{\partial\mathscr{L}}{\partial{q_i}}dq_i\Big)}$$
← $${\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}=p_i}$$、Lagrange's eq $${\dfrac{\partial\mathscr{L}}{\partial q_i}=\dfrac{d}{dt}\Big(\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}\Big)=\dfrac{dp_i}{dt}=\dot{p_i}}$$
$${=\displaystyle\sum_{i=1}^f(p_id\dot{q_i}+\dot{p_i}dq_i)=\displaystyle\sum_{i=1}^fp_id\dot{q_i}+\sum_{i=1}^f\dot{p_i}dq_i}$$
← $${d(p_i\dot{q_i})=dp_i\dot{q_i}+p_id\dot{q_i}、p_id\dot{q_i}=d(p_i\dot{q_i})-dp_i\dot{q_i}}$$
$${=\displaystyle\sum_i^f\{d(p_i\dot{q_i})-dp_i\dot{q_i}\}+\sum_{i=1}^f\dot{p_i}dq_i}$$
$${=\displaystyle d\sum_{i=1}^fp_i\dot{q_i}-\sum_{i=1}^fdp_i\dot{q_i}+\sum_{i=1}^f\dot{p_i}dq_i}$$
よって
$${\displaystyle d\Big(\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}\Big)=\sum_{i=1}^fdp_i\dot{q_i}-\sum_{i=1}^f\dot{p_i}dq_i}$$ ← $${\displaystyle \sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}=\mathscr{H}}$$
$${\displaystyle d\mathscr{H}=\sum_{i=1}^f\dot{q_i}dp_i-\sum_i^f\dot{p_i}dq_i}$$ (1-1)
ところで
$${d\mathscr{H}=\displaystyle\sum_{i=1}^f\dfrac{\partial\mathscr{H}}{\partial{p_i}}d{p_i}+\sum_{i=1}^f\dfrac{\partial\mathscr{H}}{\partial{q_i}}d{q_i}}$$ (1-2)
(1-1)(1-2)の$${dp_i, dq_i}$$の係数を比較して
$${\dot{q_i}=\dfrac{\partial\mathscr{H}}{\partial{p_i}}}$$、$${-\dot{p_i}=\dfrac{\partial\mathscr{H}}{\partial{q_i}}}$$
よって
$${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial{p_i}}}$$、$${\dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial{q_i}}}$$(Hamiltonの正準方程式)
2 最小作用の原理からの導出
Hamiltonianの定義 $${\mathscr{H}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}}$$
よって $${\mathscr{L}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{H}}$$ (2-1)
最小作用の原理より
$${\delta\displaystyle\int_{t_1}^{t2}\mathscr{L}dt=0}$$ ← (2-1)を代入
$${左辺=\delta\displaystyle\int_{t_1}^{t2}\Big(\sum_{i=1}^fp_i\dot{q_i}-\mathscr{H}\Big)dt=\displaystyle\int_{t_1}^{t2}\Big(\delta\sum_{i=1}^fp_i\dot{q_i}-\delta\mathscr{H}\Big)dt}$$
$${=\displaystyle\int_{t_1}^{t2}\delta\Big(\sum_{i=1}^fp_i\dot{q_i}-\mathscr{H}\Big)dt=\displaystyle\int_{t_1}^{t2}\Big\{\sum_{i=1}^f\delta (p_i\dot{q_i})-\delta\mathscr{H}\Big\}dt}$$
$${=\displaystyle\int_{t_1}^{t2}\Big\{\sum_{i=1}^f (\delta p_i\dot{q_i}+ p_i\delta\dot{q_i})-\sum_{i=1}^f\Big(\dfrac{\partial\mathscr{H}}{\partial q_i}\delta q_i+\dfrac{\partial\mathscr{H}}{\partial p_i}\delta p_i\Big)\Big\}dt}$$
$${=\displaystyle\sum_{i=1}^f \int_{t_1}^{t2}\Big\{(\delta p_i\dot{q_i}+ p_i\delta\dot{q_i})-\Big(\dfrac{\partial\mathscr{H}}{\partial q_i}\delta q_i+\dfrac{\partial\mathscr{H}}{\partial p_i}\delta p_i\Big)\Big\}dt}$$
$${=\displaystyle\sum_{i=1}^f \Big\{\int_{t_1}^{t2}\delta p_i\dot{q_i}dt+\underline{\int_{t_1}^{t2} p_i\delta\dot{q_i}dt}-\int_{t_1}^{t2}\Big(\dfrac{\partial\mathscr{H}}{\partial q_i}\delta q_i+\dfrac{\partial\mathscr{H}}{\partial p_i}\delta p_i\Big)\Big\}dt}$$
(部分積分)
$${=\displaystyle\sum_{i=1}^f \Big\{\int_{t_1}^{t2}\delta p_i\dot{q_i}dt+\underline{\Big[p_i\delta{q_i}\Big]_{t_1}^{t_2}}-\int_{t_1}^{t2} \dot{p_i}\delta{q_i}dt}$$
(=0) $${-\displaystyle\int_{t_1}^{t2}\Big(\dfrac{\partial\mathscr{H}}{\partial q_i}\delta q_i+\dfrac{\partial\mathscr{H}}{\partial p_i}\delta p_i\Big)\Big\}dt}$$
$${=\displaystyle\sum_{i=1}^f \Big\{\int_{t_1}^{t2}\dot{q_i}\delta p_idt-\int_{t_1}^{t2}\dot{p_i}\delta{q_i}dt-\int_{t_1}^{t2}\Big(\dfrac{\partial\mathscr{H}}{\partial q_i}\delta q_i+\dfrac{\partial\mathscr{H}}{\partial p_i}\delta p_i\Big)\Big\}dt}$$
$${=\displaystyle\sum_{i=1}^f \Big\{\int_{t_1}^{t2}\Big(\dot{q_i}-\dfrac{\partial\mathscr{H}}{\partial p_i}\Big)\delta p_i-\int_{t_1}^{t2}\Big(\dot{p_i}+\dfrac{\partial\mathscr{H}}{\partial q_i}\Big)\delta{q_i}\Big\}dt}$$
よって
$${\displaystyle\sum_{i=1}^f \Big\{\int_{t_1}^{t2}\Big(\dot{q_i}-\dfrac{\partial\mathscr{H}}{\partial p_i}\Big)\delta p_i-\int_{t_1}^{t2}\Big(\dot{p_i}+\dfrac{\partial\mathscr{H}}{\partial q_i}\Big)\delta{q_i}\Big\}dt=0}$$
上式が任意の$${\delta p_i,\delta q_i}$$に対して成り立つには
$${\dot{q_i}-\dfrac{\partial\mathscr{H}}{\partial p_i}=0, \dot{p_i}+\dfrac{\partial\mathscr{H}}{\partial q_i}=0}$$
すなわち
$${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial{p_i}}}$$、$${\dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial{q_i}}}$$(Hamiltonの正準方程式)
3 Legendre 変換からの導出
$${f(x,y)}$$のルジャンドル変換(Legendre transformation)とは
$${\dfrac{\partial f}{\partial x},y}$$を変数とする関数$${g\Big(\dfrac{\partial f}{\partial x},y\Big)}$$を作るということである。
$${f(x,y) \xrightarrow{ {ルジャンドル変換} } g\Big(\dfrac{\partial f}{\partial x},y\Big)}$$
そして、具体的には
$${g\Big(\dfrac{\partial f}{\partial x},y\Big)=\dfrac{\partial f}{\partial x}x-f(x,y)}$$ (3-1)である。
$${\mathscr{L}(\{\dot{q_i}\},{q_i})}$$に対してルジャンドル変換を行うと (3-1)は
$${\overline{\mathscr{L}}\Big(\Big\{\dfrac{\partial \mathscr{L}}{\partial\dot{q_i}}\Big\},\{q_i\}\Big)=\displaystyle\sum_{i=1}^f\dfrac{\partial \mathscr{L}}{\partial\dot{q_i}}\{\dot{q_i}\}-\mathscr{L}(\{\dot{q_i}\},\{q_i\})}$$ となる。
$${\dfrac{\partial \mathscr{L}}{\partial\dot{q_i}}=p_i}$$(3-2)なので、これを代入すると
$${\overline{\mathscr{L}}(\{p_i\},\{q_i\})=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}(\{\dot{q_i}\},\{q_i\})}$$
これは$${\mathscr{H}}$$の定義である。
$${\overline{\mathscr{L}}(\{p_i\},\{q_i\})=\mathscr{H}(\{p_i\},\{q_i\})}$$
$${\mathscr{H}(\{p_i\},\{q_i\})=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}(\{\dot{q_i}\},\{q_i\})}$$ (3-3)
つまり、$${\mathscr{L}}$$をルジャンドル変換したものが$${\mathscr{H}}$$である。
$${\mathscr{L}(\{\dot{q_i}\},\{q_i\}) \xrightarrow{ ルジャンドル変換 } \mathscr{H}(\{p_i\},\{q_i\})}$$
では、導出に入る。
(3-3)$${\mathscr{H}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}}$$より
$${\dfrac{\partial\mathscr{H}}{\partial p_i}=\dfrac{\partial}{\partial p_i}\Big(\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}\Big)=\dot{q_i}=\dfrac{dq_i}{dt}}$$
$${\dfrac{\partial\mathscr{H}}{\partial q_i}=\dfrac{\partial}{\partial q_i}\Big(\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}\Big)=-\dfrac{\partial\mathscr{L}}{\partial q_i}=-\dfrac{d}{dt}\Big(\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}\Big)}$$
$${=-\dfrac{d}{dt}(p_i)=-\dot{p_i}=-\dfrac{dp_1}{dt}}$$
よって
$${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial{p_i}}}$$、$${\dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial{q_i}}}$$(Hamiltonの正準方程式)
まとめ
以上3通りの方法で導出したが、Lagrange's eqは最小作用の原理から導かれるので1と2は出発点が違うだけで同じものである。また1も2もLegendre変換($${\mathscr{H}}$$の定義)を使っている。$${\mathscr{H}}$$を$${p_i}$$と$${q_i}$$で偏微分してもHamilton's eqは導かれるが、そのときはLagrange's eqも使っている。逆にHamilton's eqに合うように$${\mathscr{H}}$$を定義し、その手続きをLegendre変換と呼んでいるとも言える。
3 Legendre変換 $${\mathscr{H}=\displaystyle\sum_{i=1}^fp_i\dot{q_i}-\mathscr{L}}$$
↓ ↓ ↓↑
2 最小作用の原理 → 1 Lagrange's eq → ↓↑
$${\delta\displaystyle\int_{t_1}^{t_2}\mathscr{L}dt=0}$$ $${\dfrac{\partial\mathscr{L}}{\partial q_i}=\dfrac{d}{dt}\Big(\dfrac{\partial\mathscr{L}}{\partial\dot{q_i}}\Big)}$$ ↓↑
↓ ↓ ↓↑
$${\dfrac{dq_i}{dt}=\dfrac{\partial\mathscr{H}}{\partial{p_i}}}$$、$${\dfrac{dp_i}{dt}=-\dfrac{\partial\mathscr{H}}{\partial{q_i}}}$$(Hamiltonの正準方程式)
→ 力学、物理数学の目次へ