![見出し画像](https://assets.st-note.com/production/uploads/images/163099261/rectangle_large_type_2_e575a8e384c32c14d121d793def7592d.png?width=1200)
Poisson括弧の公式
(1) $${\{u,v\}=-\{v,u\}}$$
(2) $${\{u+v,w\}=\{u,w\}+\{v,w\}}$$
(3) $${\{u,vw\}=w\{u,v\}+v\{u,w\}}$$
(4) $${\{uv,w\}=v\{u,w\}+u\{v,w\}}$$
(5) $${\{uv,w\}+\{vw,u\}+\{wu,v\}=0}$$
(6) $${\{u,\{v,w\}\}+\{v,\{w,u\}\}+\{w,\{u,v\}\}=0}$$(Jacobi の恒等式)
簡単に証明できると思ったら(6)は結構やっかいだった。ケアレスミスの帝王は苦戦しました。
(1) $${\{u,v\}=-\{v,u\}}$$の証明
左辺$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial q_i}\Big)=-\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial q_i}-\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial p_i}\Big)}$$
$${=-\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial v}{\partial q_i}\dfrac{\partial u}{\partial p_i}-\dfrac{\partial v}{\partial p_i}\dfrac{\partial u}{\partial q_i}\Big)=-\{v,u\}}$$
(2) $${\{u+v,w\}=\{u,w\}+\{v,w\}}$$の証明
左辺$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial (u+v)}{\partial q_i}\dfrac{\partial w}{\partial p_i}-\dfrac{\partial (u+v)}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^f\Big\{\Big(\dfrac{\partial u}{\partial q_i}+\dfrac{\partial v}{\partial q_i}\Big)\dfrac{\partial w}{\partial p_i}-\Big(\dfrac{\partial u}{\partial p_i}+\dfrac{\partial v}{\partial p_i}\Big)\dfrac{\partial w}{\partial q_i}\Big\}}$$
$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial w}{\partial p_i}+\dfrac{\partial v}{\partial q_i}\dfrac{\partial w}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial w}{\partial q_i}-\dfrac{\partial v}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial w}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)+\sum_{i=1}^f\Big(\dfrac{\partial v}{\partial q_i}\dfrac{\partial w}{\partial p_i}-\dfrac{\partial v}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)}$$
$${=\{u,w\}+\{v,w\}}$$
(3) $${\{u,vw\}=w\{u,v\}+v\{u,w\}}$$の証明
左辺$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial (vw)}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial (vw)}{\partial q_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^f\Big\{\dfrac{\partial u}{\partial q_i}\Big(\dfrac{\partial v}{\partial p_i}w+v\dfrac{\partial w}{\partial p_i}\Big)-\dfrac{\partial u}{\partial p_i}\Big(\dfrac{\partial v}{\partial q_i}w+v\dfrac{\partial w}{\partial q_i}\Big)\Big\}}$$
$${=\displaystyle\sum_{i=1}^f\Big(w\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial p_i}+v\dfrac{\partial u}{\partial q_i}\dfrac{\partial w}{\partial p_i}-w\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial q_i}+v\dfrac{\partial u}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)}$$
$${=w\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial q_i}\Big)+v\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial w}{\partial p_i}+v\dfrac{\partial u}{\partial p_i}\dfrac{\partial w}{\partial q_i}\Big)}$$
$${=w\{u,v\}+v\{uw\}}$$
(4) $${\{uv,w\}=\{v,w\}+v\{u,w\}}$$の証明
左辺$${=-\{w,uv\}=-(v\{w,u\}+u\{w,v\})=-(-v\{u,w\}-u\{v,w\})}$$
$${=v\{u,w\}+u\{v,w\}}$$
(5) $${\{uv,w\}+\{vw,u\}+\{wu,v\}=0}$$の証明
左辺$${=-\{w,uv\}-\{u,vw\}-\{v,wu\}}$$
$${=-u\{w,v\}-v\{w,u\}-v\{u,w\}-w\{u,v\}-w\{v,u\}-u\{v,w\}}$$
$${=u\{v,w\}-u\{v,w\}-v\{w,u\}+v\{w,u\}-w\{u,v\}+w\{u,v\}=0}$$
(6) $${\{u,\{v,w\}\}+\{v,\{w,u\}\}+\{w,\{u,v\}\}=0}$$(Jacobi の恒等式)の証明
左辺$${=\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial\{v,w\}}{\partial p_i}-\dfrac{\partial u}{\partial p_i}\dfrac{\partial\{v,w\}}{\partial q_i}\Big)}$$
$${+\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial v}{\partial q_i}\dfrac{\partial\{w,u\}}{\partial p_i}-\dfrac{\partial v}{\partial p_i}\dfrac{\partial\{w,u\}}{\partial q_i}\Big)}$$
$${+\displaystyle\sum_{i=1}^f\Big(\dfrac{\partial w}{\partial q_i}\dfrac{\partial\{u,v\}}{\partial p_i}-\dfrac{\partial w}{\partial p_i}\dfrac{\partial\{u,v\}}{\partial q_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^f\Big\{\dfrac{\partial u}{\partial q_i}\dfrac{\partial}{\partial p_i}\sum_{j=1}^f\Big(\dfrac{\partial v}{\partial q_j}\dfrac{\partial w}{\partial p_j}-\dfrac{\partial v}{\partial p_j}\dfrac{\partial w}{\partial q_j}\Big)}$$
$${-\displaystyle\dfrac{\partial u}{\partial p_i}\sum_{j=1}^f\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial v}{\partial q_j}\dfrac{\partial w}{\partial p_j}-\dfrac{\partial v}{\partial p_j}\dfrac{\partial w}{\partial q_j}\Big)\Big\}}$$
$${+\displaystyle\sum_{i=1}^f\Big\{\dfrac{\partial v}{\partial q_i}\dfrac{\partial}{\partial p_i}\sum_{j=1}^f\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial u}{\partial p_j}-\dfrac{\partial w}{\partial p_j}\dfrac{\partial u}{\partial q_j}\Big)}$$
$${-\displaystyle\dfrac{\partial v}{\partial p_i}\dfrac{\partial}{\partial q_i}\sum_{j=1}^f\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial u}{\partial p_j}-\dfrac{\partial w}{\partial p_j}\dfrac{\partial u}{\partial q_j}\Big)\Big\}}$$
$${+\displaystyle\sum_{i=1}^f\Big\{\dfrac{\partial w}{\partial q_i}\dfrac{\partial}{\partial p_i}\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial q_j}\dfrac{\partial v}{\partial p_j}-\dfrac{\partial u}{\partial p_j}\dfrac{\partial v}{\partial q_j}\Big)}$$
$${-\displaystyle\dfrac{\partial w}{\partial p_i}\dfrac{\partial}{\partial q_i}\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial q_j}\dfrac{\partial v}{\partial p_j}-\dfrac{\partial u}{\partial p_j}\dfrac{\partial v}{\partial q_j}\Big)\Big\}}$$
$${=\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big\{\dfrac{\partial u}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial v}{\partial q_j}\dfrac{\partial w}{\partial p_j}\Big)-\dfrac{\partial u}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial v}{\partial p_j}\dfrac{\partial w}{\partial q_j}\Big)}$$
$${-\dfrac{\partial u}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial v}{\partial q_j}\dfrac{\partial w}{\partial p_j}\Big)+\dfrac{\partial u}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial v}{\partial p_j}\dfrac{\partial w}{\partial q_j}\Big)}$$
$${+\dfrac{\partial v}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial u}{\partial p_j}\Big)-\dfrac{\partial v}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial w}{\partial p_j}\dfrac{\partial u}{\partial q_j}\Big)}$$
$${-\dfrac{\partial v}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial u}{\partial p_j}\Big)+\dfrac{\partial v}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial w}{\partial p_j}\dfrac{\partial u}{\partial q_j}\Big)}$$
$${+\dfrac{\partial w}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial u}{\partial q_j}\dfrac{\partial v}{\partial p_j}\Big)-\dfrac{\partial w}{\partial q_i}\dfrac{\partial}{\partial p_i}\Big(\dfrac{\partial u}{\partial p_j}\dfrac{\partial v}{\partial q_j}\Big)}$$
$${-\dfrac{\partial w}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial u}{\partial q_j}\dfrac{\partial v}{\partial p_j}\Big)+\dfrac{\partial w}{\partial p_i}\dfrac{\partial}{\partial q_i}\Big(\dfrac{\partial u}{\partial p_j}\dfrac{\partial v}{\partial q_j}\Big)\Big\}}$$
$${=\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial p_i\partial q_j}\dfrac{\partial w}{\partial p_j}①+\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial p_i\partial p_j}②}$$
$${-\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial p_i\partial p_j}\dfrac{\partial w}{\partial q_j}③-\dfrac{\partial u}{\partial q_i}\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial p_i\partial q_j}④}$$$${-\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial q_i\partial q_j}\dfrac{\partial w}{\partial p_j}⑤}$$
$${-\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial q_i\partial p_j}⑥}$$$${+\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial q_i\partial p_j}\dfrac{\partial w}{\partial q_j}⑦+\dfrac{\partial u}{\partial p_i}\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial q_i\partial q_j}⑧}$$
$${+\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial p_i\partial q_j}\dfrac{\partial u}{\partial p_j}⑨+\dfrac{\partial v}{\partial q_i}\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial p_i\partial p_j}⑩}$$$${-\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial p_i\partial p_j}\dfrac{\partial u}{\partial q_j}⑪}$$
$${-\dfrac{\partial v}{\partial q_i}\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial p_i\partial q_j}⑫}$$$${-\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial q_i\partial q_j}\dfrac{\partial u}{\partial p_j}⑬-\dfrac{\partial v}{\partial p_i}\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial q_i\partial p_j}⑭}$$
$${+\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial q_i\partial p_j}\dfrac{\partial u}{\partial q_j}⑮+\dfrac{\partial v}{\partial p_i}\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial q_i\partial q_j}⑯}$$$${+\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial p_i\partial q_j}\dfrac{\partial v}{\partial p_j}⑰}$$
$${+\dfrac{\partial w}{\partial q_i}\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial p_i\partial p_j}⑱}$$$${-\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial p_i\partial p_j}\dfrac{\partial v}{\partial q_j}⑲-\dfrac{\partial w}{\partial q_i}\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial p_i\partial q_j}⑳}$$
$${-\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial q_i\partial q_j}\dfrac{\partial v}{\partial p_j}㉑-\dfrac{\partial w}{\partial p_i}\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial q_i\partial p_j}㉒}$$$${+\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial q_i\partial p_j}\dfrac{\partial v}{\partial q_j}㉓}$$
$${+\dfrac{\partial w}{\partial p_i}\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial q_i\partial q_j}㉔\Big)}$$
↓ 各項を$${\dfrac{\partial x}{\partial a_?}\dfrac{\partial^2 y}{\partial b_?\partial c_?}\dfrac{\partial z}{\partial d_?}}$$の形に並べ直す
$${=\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial q_j\partial p_i}\dfrac{\partial w}{\partial p_j}①+\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial p_i\partial p_j}\dfrac{\partial u}{\partial q_i}②}$$
$${-\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial p_i\partial p_j}\dfrac{\partial w}{\partial q_j}③-\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial p_i\partial q_j}\dfrac{\partial u}{\partial q_i}④}$$$${-\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial q_i\partial q_j}\dfrac{\partial w}{\partial p_j}⑤}$$
$${-\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial q_i\partial p_j}\dfrac{\partial u}{\partial p_i}⑥}$$$${+\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial p_j\partial q_i}\dfrac{\partial w}{\partial q_j}⑦+\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial q_i\partial q_j}\dfrac{\partial u}{\partial p_i}⑧}$$
$${+\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial q_j\partial p_i}\dfrac{\partial u}{\partial p_j}⑨+\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial p_i\partial p_j}\dfrac{\partial v}{\partial q_i}⑩}$$$${-\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial p_i\partial p_j}\dfrac{\partial u}{\partial q_j}⑪}$$
$${-\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial p_i\partial q_j}\dfrac{\partial v}{\partial q_i}⑫}$$$${-\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial q_i\partial q_j}\dfrac{\partial u}{\partial p_j}⑬-\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial q_i\partial p_j}\dfrac{\partial v}{\partial p_i}⑭}$$
$${+\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial p_j\partial q_i}\dfrac{\partial u}{\partial q_j}⑮+\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial q_i\partial q_j}\dfrac{\partial v}{\partial p_i}⑯}$$$${+\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial q_j\partial p_i}\dfrac{\partial v}{\partial p_j}⑰}$$
$${+\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial p_i\partial p_j}\dfrac{\partial w}{\partial q_i}⑱}$$$${-\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial p_i\partial p_j}\dfrac{\partial v}{\partial q_j}⑲-\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial p_i\partial q_j}\dfrac{\partial w}{\partial q_i}⑳}$$
$${-\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial q_i\partial q_j}\dfrac{\partial v}{\partial p_j}㉑-\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial q_i\partial p_j}\dfrac{\partial w}{\partial p_i}㉒}$$$${+\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial p_j\partial q_i}\dfrac{\partial v}{\partial q_j}㉓}$$
$${+\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial q_i\partial q_j}\dfrac{\partial w}{\partial p_i}㉔\Big)}$$
↓ 2階偏微分で整理する
$${=\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial p_i\partial p_j}\dfrac{\partial v}{\partial q_i}⑩-\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial p_i\partial p_j}\dfrac{\partial v}{\partial q_j}⑲}$$
$${+\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial q_i\partial q_j}\dfrac{\partial v}{\partial p_i}⑯-\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial q_i\partial q_j}\dfrac{\partial v}{\partial p_j}㉑}$$
$${+\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial p_j\partial q_i}\dfrac{\partial v}{\partial q_j}㉓-\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial p_i\partial q_j}\dfrac{\partial v}{\partial q_i}⑫}$$
$${+\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial q_j\partial p_i}\dfrac{\partial v}{\partial p_j}⑰-\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial q_i\partial p_j}\dfrac{\partial v}{\partial p_i}⑭}$$
$${+\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial p_i\partial p_j}\dfrac{\partial w}{\partial q_i}⑱-\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial p_i\partial p_j}\dfrac{\partial w}{\partial q_j}③}$$
$${+\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial q_i\partial q_j}\dfrac{\partial w}{\partial p_i}㉔-\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial q_i\partial q_j}\dfrac{\partial w}{\partial p_j}⑤}$$
$${+\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial p_j\partial q_i}\dfrac{\partial w}{\partial q_j}⑦-\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial p_i\partial q_j}\dfrac{\partial w}{\partial q_i}⑳}$$
$${+\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial q_j\partial p_i}\dfrac{\partial w}{\partial p_j}①-\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial q_i\partial p_j}\dfrac{\partial w}{\partial p_i}㉒}$$
$${+\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial p_i\partial p_j}\dfrac{\partial u}{\partial q_i}②-\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial p_i\partial p_j}\dfrac{\partial u}{\partial q_j}⑪}$$
$${+\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial q_i\partial q_j}\dfrac{\partial u}{\partial p_i}⑧-\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial q_i\partial q_j}\dfrac{\partial u}{\partial p_j}⑬}$$
$${+\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial p_j\partial q_i}\dfrac{\partial u}{\partial q_j}⑮-\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial p_i\partial q_j}\dfrac{\partial u}{\partial q_i}④}$$
$${+\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial q_j\partial p_i}\dfrac{\partial u}{\partial p_j}⑨-\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial q_i\partial p_j}\dfrac{\partial u}{\partial p_i}⑥\Big)}$$
↓ ※1 $${\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$
※2 $${\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$
より各項=0である。(※1、2の証明は後述)
$${=\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 u}{\partial p_i\partial p_j}\Big(\dfrac{\partial w}{\partial q_j}\dfrac{\partial v}{\partial q_i}⑩-\dfrac{\partial w}{\partial q_i}\dfrac{\partial v}{\partial q_j}⑲\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 u}{\partial q_i\partial q_j}\Big(\dfrac{\partial w}{\partial p_j}\dfrac{\partial v}{\partial p_i}⑯-\dfrac{\partial w}{\partial p_i}\dfrac{\partial v}{\partial p_j}㉑\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial w}{\partial p_i}\dfrac{\partial^2 u}{\partial p_j\partial q_i}\dfrac{\partial v}{\partial q_j}㉓-\dfrac{\partial w}{\partial p_j}\dfrac{\partial^2 u}{\partial p_i\partial q_j}\dfrac{\partial v}{\partial q_i}⑫\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial w}{\partial q_i}\dfrac{\partial^2 u}{\partial q_j\partial p_i}\dfrac{\partial v}{\partial p_j}⑰-\dfrac{\partial w}{\partial q_j}\dfrac{\partial^2 u}{\partial q_i\partial p_j}\dfrac{\partial v}{\partial p_i}⑭\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 v}{\partial p_i\partial p_j}\Big(\dfrac{\partial u}{\partial q_j}\dfrac{\partial w}{\partial q_i}⑱-\dfrac{\partial u}{\partial q_i}\dfrac{\partial w}{\partial q_j}③\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 v}{\partial q_i\partial q_j}\Big(\dfrac{\partial u}{\partial p_j}\dfrac{\partial w}{\partial p_i}㉔-\dfrac{\partial u}{\partial p_i}\dfrac{\partial w}{\partial p_j}⑤\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial p_i}\dfrac{\partial^2 v}{\partial p_j\partial q_i}\dfrac{\partial w}{\partial q_j}⑦-\dfrac{\partial u}{\partial p_j}\dfrac{\partial^2 v}{\partial p_i\partial q_j}\dfrac{\partial w}{\partial q_i}⑳\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial u}{\partial q_i}\dfrac{\partial^2 v}{\partial q_j\partial p_i}\dfrac{\partial w}{\partial p_j}①-\dfrac{\partial u}{\partial q_j}\dfrac{\partial^2 v}{\partial q_i\partial p_j}\dfrac{\partial w}{\partial p_i}㉒\Big)}$$
$${-\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 w}{\partial p_i\partial p_j}\Big(\dfrac{\partial v}{\partial q_i}\dfrac{\partial u}{\partial q_j}⑪-\dfrac{\partial v}{\partial q_j}\dfrac{\partial u}{\partial q_i}②\Big)}$$
$${-\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2 w}{\partial q_i\partial q_j}\Big(\dfrac{\partial v}{\partial p_i}\dfrac{\partial u}{\partial p_j}⑬-\dfrac{\partial v}{\partial p_j}\dfrac{\partial u}{\partial p_i}⑧\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial v}{\partial p_i}\dfrac{\partial^2 w}{\partial p_j\partial q_i}\dfrac{\partial u}{\partial q_j}⑮-\dfrac{\partial v}{\partial p_j}\dfrac{\partial^2 w}{\partial p_i\partial q_j}\dfrac{\partial u}{\partial q_i}④\Big)}$$
$${+\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial v}{\partial q_i}\dfrac{\partial^2 w}{\partial q_j\partial p_i}\dfrac{\partial u}{\partial p_j}⑨-\dfrac{\partial v}{\partial q_j}\dfrac{\partial^2 w}{\partial q_i\partial p_j}\dfrac{\partial u}{\partial p_i}⑥\Big)}$$
$${=0}$$
※1 $${\displaystyle\sum_{i=1}^f\sum_{j=1}^f\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$ の証明
(I)$${f=1}$$のとき
左辺$${=\dfrac{\partial^2x}{\partial a_1\partial a_1}\Big(\dfrac{\partial y}{\partial b_1}\dfrac{\partial z}{\partial b_1}-\dfrac{\partial y}{\partial b_1}\dfrac{\partial z}{\partial b_1}\Big)=0}$$ 成り立つ
(II)$${f=n}$$のとき、成り立つとする。
$${\displaystyle\sum_{i=1}^n\sum_{j=1}^n\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$ (A)
(II)$${f=n+1}$$のとき
左辺$${=\displaystyle\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^{n+1}\Big\{\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)\Big\}}$$
$${=\displaystyle\sum_{j=1}^{n}\sum_{i=1}^{n+1}\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\displaystyle\sum_{i=1}^{n+1}\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${=\underline{\displaystyle\sum_{j=1}^{n}\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_j}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}}$$ ← (A)より 下線部$${=0}$$
$${+\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\Big(\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}\Big)}$$
$${+\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\underline{\dfrac{\partial^2x}{\partial a_{n+1}\partial a_{n+1}}\Big(\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_{n+1}}\Big)}}$$ ← 下線部$${=0}$$
$${=\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\Big(\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}\Big)}$$
$${+\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\Big(\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${=\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}}$$
$${+\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_i\partial a_{n+1}}\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}}$$
$${=\underline{\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_i}\dfrac{\partial y}{\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}}}$$ ←下線部$${=0}$$
$${+\underline{\displaystyle\sum_{i=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_i}\dfrac{\partial y}{\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\displaystyle\sum_{j=1}^{n}\dfrac{\partial^2x}{\partial a_{n+1}\partial a_j}\dfrac{\partial y}{\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}}}$$ ←下線部$${=0}$$
$${=0}$$
よって、すべての自然数$${n}$$について成り立つ。
※2 $${\displaystyle\sum_{i=1}^f\sum_{j=1}^f\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$ の証明
(I)$${f=1}$$のとき
左辺$${=\dfrac{\partial x}{\partial a_1}\dfrac{\partial^2y}{\partial a_1\partial b_1}\dfrac{\partial z}{\partial b_1}-\dfrac{\partial x}{\partial a_1}\dfrac{\partial^2y}{\partial a_1\partial b_1}\dfrac{\partial z}{\partial b_1}=0}$$ 成り立つ。
(II)$${f=1}$$のとき成り立つとする。
$${\displaystyle\sum_{i=1}^n\sum_{j=1}^n\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)=0}$$ (B)
(III)$${f=n+1}$$のとき
左辺$${=\displaystyle\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${=\displaystyle\sum_{i=1}^{n+1}\Big\{\sum_{j=1}^{n}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_i\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)\Big\}}$$
$${=\displaystyle\sum_{j=1}^{n}\sum_{i=1}^{n+1}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\displaystyle\sum_{i=1}^{n+1}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_i\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${=\underline{\displaystyle\sum_{j=1}^{n}\sum_{i=1}^{n}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_j\partial b_i}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_i\partial b_j}\dfrac{\partial z}{\partial b_i}\Big)}}$$ ← (B)より下線部$${=0}$$
$${+\displaystyle\sum_{j=1}^{n}\Big(\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_j\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}\Big)}$$
$${+\displaystyle\sum_{i=1}^{n}\Big(\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_i\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}\Big)}$$
$${+\underline{\Big(\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_{n+1}}\dfrac{\partial z}{\partial b_{n+1}}-\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_{n+1}}\dfrac{\partial z}{\partial b_{n+1}}\Big)}}$$
← 下線部$${=0}$$
$${=\displaystyle\sum_{j=1}^{n}\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_j\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\displaystyle\sum_{j=1}^{n}\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}}$$
$${+\displaystyle\sum_{i=1}^{n}\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\displaystyle\sum_{i=1}^{n}\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_i\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}}$$
$${=\underline{\displaystyle\sum_{j=1}^{n}\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_j\partial b_{n+1}}\dfrac{\partial z}{\partial b_j}-\displaystyle\sum_{i=1}^{n}\dfrac{\partial x}{\partial a_{n+1}}\dfrac{\partial^2y}{\partial a_i\partial b_{n+1}}\dfrac{\partial z}{\partial b_i}}}$$ ← 下線部$${=0}$$
$${+\underline{\displaystyle\sum_{i=1}^{n}\dfrac{\partial x}{\partial a_i}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_i}\dfrac{\partial z}{\partial b_{n+1}}-\displaystyle\sum_{j=1}^{n}\dfrac{\partial x}{\partial a_j}\dfrac{\partial^2y}{\partial a_{n+1}\partial b_j}\dfrac{\partial z}{\partial b_{n+1}}}}$$ ← 下線部$${=0}$$
$${=0}$$
よって、すべての自然数$${n}$$について成り立つ。
→ 力学、物理数学の目次へ