![見出し画像](https://assets.st-note.com/production/uploads/images/172333838/rectangle_large_type_2_554e3585cb8a6fdff7e69f76a9bf79d5.jpeg?width=1200)
量子層創発共鳴アレイ:QLRA シミュレートコード
"Emergent Resonance Computing (ERC)"「創発共鳴計算」のメインとなる素子"Quantum Layer Resonance Array (QLRA)"「量子層共鳴アレイ」のシミュレートコードを作成しました。
// @filename: index.ts
/**
* Emergent Resonance Computing (ERC) Library
* Version 1.0.0
*
* Core components and utilities for Quantum Layer Resonance Array (QLRA) based computing
*/
// Core Types
export interface QLRAConfig {
size?: number; // Matrix size (default: 256)
theta_c?: number; // Critical resonance parameter (default: 1.5)
stepInterval?: number; // Computation step interval in ms (default: 100)
}
export type QLRAState = 0 | 1 | 2; // 0: Inactive, 1: Active, 2: Emergent
export type QLRAMatrix = QLRAState[][];
export type ResonancePattern = QLRAMatrix[];
export interface ComputationResult {
finalState: QLRAMatrix;
emergenceDensity: number;
activeDensity: number;
patternHistory: ResonancePattern;
}
// Core Components Export
export { QLRA } from './components/QLRA';
export { QLRAVisualizer } from './components/QLRAVisualizer';
export { QLRAController } from './components/QLRAController';
export { useQLRA } from './hooks/useQLRA';
// Utility Functions Export
export {
initializeMatrix,
computeResonance,
analyzePattern,
encodeData,
decodeResult
} from './utils/qlraUtils';
// Algorithm Patterns Export
export {
patternMatching,
optimization,
dataEncoding,
featureExtraction
} from './algorithms/patterns';
// Constants Export
export { DEFAULT_CONFIG } from './constants';
// @filename: components/QLRA.tsx
import React from 'react';
import { QLRAConfig, QLRAMatrix } from '../types';
export interface QLRAProps {
config?: QLRAConfig;
onCompute?: (result: ComputationResult) => void;
className?: string;
}
export const QLRA: React.FC<QLRAProps> = ({
config,
onCompute,
className
}) => {
// Implementation
};
// @filename: hooks/useQLRA.ts
import { useState, useEffect } from 'react';
import { QLRAConfig, ComputationResult } from '../types';
export function useQLRA(config?: QLRAConfig) {
// Implementation
}
// @filename: utils/qlraUtils.ts
export function initializeMatrix(size: number = 256): QLRAMatrix {
// Implementation
}
export function computeResonance(
matrix: QLRAMatrix,
theta_c: number = 1.5
): QLRAMatrix {
// Implementation
}
// @filename: algorithms/patterns.ts
export const algorithmPatterns = {
/**
* Pattern Matching Algorithm
* Used for finding similarities between patterns
*/
patternMatching: {
name: 'Pattern Matching',
description: 'Compares input pattern with target pattern using QLRA',
complexity: 'O(n²)',
example: `
const result = await qlra.patternMatching({
input: inputPattern,
target: targetPattern,
steps: 100
});
`
},
/**
* Optimization Algorithm
* Used for finding optimal solutions in complex spaces
*/
optimization: {
name: 'Optimization',
description: 'Finds optimal solutions using resonance patterns',
complexity: 'O(n × steps)',
example: `
const optimal = await qlra.optimize({
objective: objectiveFunction,
constraints: constraints,
maxSteps: 1000
});
`
},
/**
* Data Encoding Algorithm
* Used for encoding classical data into QLRA states
*/
dataEncoding: {
name: 'Data Encoding',
description: 'Encodes classical data into QLRA resonance patterns',
complexity: 'O(n)',
example: `
const encoded = qlra.encode({
data: classicalData,
method: 'spatial'
});
`
},
/**
* Feature Extraction Algorithm
* Used for extracting features from resonance patterns
*/
featureExtraction: {
name: 'Feature Extraction',
description: 'Extracts meaningful features from QLRA patterns',
complexity: 'O(n × log n)',
example: `
const features = qlra.extractFeatures({
pattern: resonancePattern,
method: 'spectral'
});
`
}
};
// Usage Examples and Documentation
/**
* Basic Usage:
*
* import { QLRA, useQLRA } from 'erc-library';
*
* // As a React Component
* function MyComponent() {
* return (
* <QLRA
* config={{ size: 256, theta_c: 1.5 }}
* onCompute={handleComputation}
* />
* );
* }
*
* // As a Hook
* function MyComputationComponent() {
* const { compute, result, reset } = useQLRA();
*
* return (
* <div>
* <button onClick={() => compute(inputData)}>
* Start Computation
* </button>
* </div>
* );
* }
*/
/**
* Advanced Usage:
*
* // Pattern Matching
* const matchResult = await qlra.patternMatching(inputPattern, targetPattern);
*
* // Optimization
* const optimizedResult = await qlra.optimize(objectiveFunction);
*
* // Feature Extraction
* const features = await qlra.extractFeatures(resonancePattern);
*/
Emergent Resonance Computing (ERC) Library
Version 1.0.0
Overview
ERC Library provides a comprehensive framework for implementing Quantum Layer Resonance Array (QLRA) based computing systems in React applications.
Core Components
1. QLRA Component
Primary computing element implementing the 256×256 quantum layer resonance array.
import { QLRA } from 'erc-library';
<QLRA
config={{ size: 256, theta_c: 1.5 }}
onCompute={handleResult}
/>
2. QLRAVisualizer
Visualization component for resonance patterns.
import { QLRAVisualizer } from 'erc-library';
<QLRAVisualizer
matrix={computationResult.finalState}
colorMap={customColorMap}
/>
3. QLRAController
Control interface for QLRA operations.
import { QLRAController } from 'erc-library';
<QLRAController
onStart={startComputation}
onReset={resetSystem}
/>
Hooks
useQLRA
Custom hook for QLRA computation management.
const { compute, result, reset } = useQLRA({
size: 256,
theta_c: 1.5
});
Utility Functions
1. Matrix Operations
`initializeMatrix(size?: number)`
`computeResonance(matrix: QLRAMatrix, theta_c?: number)`
`analyzePattern(pattern: ResonancePattern)`
2. Data Processing
`encodeData(data: any[])`
`decodeResult(result: ComputationResult)`
Algorithm Patterns
1. Pattern Matching
const result = await qlra.patternMatching({
input: inputPattern,
target: targetPattern,
steps: 100
});
2. Optimization
const optimal = await qlra.optimize({
objective: objectiveFunction,
constraints: constraints,
maxSteps: 1000
});
3. Data Encoding
const encoded = qlra.encode({
data: classicalData,
method: 'spatial'
});
4. Feature Extraction
const features = qlra.extractFeatures({
pattern: resonancePattern,
method: 'spectral'
});
Types
Core Types
type QLRAState = 0 | 1 | 2; // Inactive, Active, Emergent
type QLRAMatrix = QLRAState[][];
type ResonancePattern = QLRAMatrix[];
interface ComputationResult {
finalState: QLRAMatrix;
emergenceDensity: number;
activeDensity: number;
patternHistory: ResonancePattern;
}
Configuration
interface QLRAConfig {
size?: number; // Default: 256
theta_c?: number; // Default: 1.5
stepInterval?: number; // Default: 100
}
Best Practices
1. Initialization
// Initialize with default configuration
const qlra = new QLRA();
// Initialize with custom configuration
const qlra = new QLRA({
size: 512,
theta_c: 1.8,
stepInterval: 50
});
2. Computation Flow
// Basic computation flow
const computePattern = async () => {
await qlra.reset();
const result = await qlra.compute(inputData);
const features = await qlra.extractFeatures(result);
return features;
};
3. Error Handling
try {
const result = await qlra.compute(inputData);
} catch (error) {
if (error instanceof QLRAError) {
console.error('QLRA computation error:', error.message);
}
}
Performance Considerations
Matrix Size Impact
Default 256×256 optimized for most use cases
Larger sizes increase computation complexity exponentially
Step Interval Optimization
Minimum recommended: 50ms
Optimal range: 100-200ms
Memory Management
Pattern history limited to last 1000 steps by default
Configurable through `maxHistoryLength` option
Common Use Cases
Pattern Recognition
Optimization Problems
Data Encoding/Decoding
Feature Extraction
Quantum-Inspired Computing
Version History
1.0.0: Initial release
Core QLRA implementation
Basic algorithm patterns
React component library