【数学コラム】相加相乗平均
今回の数学コラムでは相加相乗平均について話そうと思います。相加相乗平均は高校数学で登場しますが、数が2つの場合だけしか考えません。このコラムでは一般的な場合について考え、証明します。証明方法は難しいですが、数Ⅲの範囲で理解することができます。
2つの正の実数$${a_1,\, a_2}$$の平均を考える時一般に次の数を考えると思います。
これを相加平均と言います。
平均の仕方は他にも考えられて、例えば、2つの正の実数$${a_1,\, a_2}$$を掛けてルートを取れば平均らしくなります。
これを相乗平均と言います。
相加平均と相乗平均を考えたとき、必ず次の不等式が成り立ちます。
これが高校数学で習う相加相乗平均に関する不等式です。これは簡単に証明できるので、証明は自明のものとします。(実際に自分で証明してみてください。)
ただ、平均とは2つの実数の場合だけ考えるのではなく、一般的に多くの実数が存在する場合に平均を考えます。例えば、$${n}$$個の正の実数$${a_1,\, a_2,\, \cdots , \, a_n}$$が存在したとき次の不等式は成り立つのでしょうか?
この不等式は、実は成り立ちます。そのことを証明していきます。
この不等式を証明するには数学的帰納法を用います。
まず、$${n=2}$$のときは最初に見たとおり成り立つので大丈夫です。
次に、$${n=k-1\, (k\geq 3)}$$のときに成り立つと仮定します。つまり、次の不等式が成り立つと仮定します。
このとき、$${n=k}$$の場合を考えます。ここで、次のような関数$${f(x)}$$を導入します。
この関数が任意の正の実数$${x}$$で$${f(x)\geq 0}$$となれば、数学的帰納法より証明したい不等式は証明できたことになります。よって、「任意の正の実数$${x}$$において$${f(x)\geq 0}$$」となることを証明していきます。
まず、関数$${f(x)}$$の導関数$${f'(x)}$$を考えます。
この導関数$${f'(x)}$$を見ると、この導関数$${f'(x)}$$は$${x}$$に関して単調増加する(つまり$${x}$$が増加すれば$${f'(x)}$$も増加する)ことが分かります。したがって、関数$${f(x)}$$は下に凸な関数です。
次に場合分けをします。①$${f'(0)\geq 0}$$の場合と②$${f'(0)<0}$$の場合です。
①の場合、関数$${f(x)}$$は$${x}$$に従って増加する一方で、$${f(0)>0}$$であるのは明らかなので、すべての正の実数$${x}$$において$${f(x)\geq 0}$$です。
②の場合は、$${f'(x)=0}$$はただ一つ正の根を持ちます。それを$${x_0}$$と置くと次のように計算できます。
関数$${f(x)}$$は下に凸なので、$${x=x_0}$$で最小値をとります。
したがって、最後の式の右辺の中括弧は数学的帰納法の仮定より$${0}$$以上なので、最小の値をとる$${x=x_0}$$において$${f(x_0)\geq 0}$$となります。ゆえに、②の場合においてもすべての正の実数$${x}$$において$${f(x)\geq 0}$$となります。
以上①②より、すべての正の実数$${x}$$において$${f(x)\geq 0}$$となり、証明が終了します。
いかがだったでしょうか?少し難しかったと思います。ただ、相加相乗平均の不等式の証明で、関数の凸性を利用したりする発想がおもしろいですよね。
(ちなみに、この証明は杉浦・清水・金子・岡本「解析演習」(東京大学出版会)をもとに書いており、また、証明方法は吉田洋一氏によるものだそうです。)