
算数の教科書に載っている帯グラフの問題
きのう、小学校の算数の教科書に載っている、ある帯グラフの問題を見ました。帯グラフとは、全体を100%とした、割合を表すグラフです。円グラフを思い浮かべていただいてもよいです。
こんな感じです。
以下の帯グラフは、ある小学校のある月の、けがをした人数の帯グラフです。と書かれていて、けがをした場所が書いてあります。校庭45%、体育館30%、教室15%、・・・。
いや待て。その月に2回、けがしていて、校庭で1回、体育館で1回、けがした人はどうカウントされるのか。あるいは、その月に3回、けがしていて、校庭で1回、体育館で2回の人とか、校庭で1回、体育館で1回、教室で1回の人とかはどうカウントされるのか。まずそれを思いましたが、問題を読み進むうち、このグラフは、「けがをするとしたら、この月に、ひとり1回まで」という大前提で、問題が作られていることがわかりました。
ひどくない?
そもそも、こんなところで帯グラフ(円グラフ)を使うものではないよ。こういうところで帯グラフを使ってよいと小学生に思わせるだけで、充分、罪な問題である。
ちょっと、ここまでひどくないですけど、私が小学生のころ見た、ちょっとだけ「あれっ」という問題を思い出しましたので、それも書きますね。
「2,000円を持って買い物に行きました。700円のものを買いました。おつりはいくらでしょう」。
模範解答は、1,300円でした。
そのころは、二千円札はありませんでした。したがって、たとえば2,000円を、千円札2枚で持って行ったのなら、700円のものを買うのに千円札は1枚しか出しませんから、おつりは、「300円」になるはずです。あるいは、2,000円を、百円玉20枚で持って行ったのなら、おつりは0円のはずです。これは、上の帯グラフのひどい問題に比べれば、かわいいですけど…。幼心にもおかしいと思った問題です。
とにかく、上の割合の(帯グラフの)問題はひどいと思います。
以上です!