超簡単Pythonで株価予測(FLAML 利用)自動機械学習(AutoML)
PythonでFLAMLを利用して翌日の株価の上下予測を超簡単に自動機械学習(AutoML)
1. ツールインストール
$ pip install flaml yfinance
2. ファイル作成
pred.py
import yfinance as yf
from sklearn.model_selection import train_test_split
from flaml import AutoML
from sklearn.metrics import accuracy_score
df = yf.download("AAPL", start="2010-11-01", end="2020-11-01")
df["Diff"] = df.Close.diff()
df["SMA_2"] = df.Close.rolling(2).mean()
df["Force_Index"] = df["Close"] * df["Volume"]
df["y"] = df["Diff"].apply(lambda x: 1 if x > 0 else 0).shift(-1)
df = df.drop(
["Open", "High", "Low", "Close", "Volume", "Diff", "Adj Close"],
axis=1,
).dropna()
# print(df)
X = df.drop(["y"], axis=1).values
y = df["y"].values
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.2,
shuffle=False,
)
clf = AutoML()
clf.fit(X_train, y_train, task="classification", time_budget=60)
y_pred = clf.predict(X_test)
print(accuracy_score(y_test, y_pred))
3. 実行
$ python pred.py
0.5277777777777778
以上、超簡単!
4. 結果
同じデータ、特徴量で、計算した結果、PyCaret・PyCaret(bagging)・PyCaret(voting)・PyCaret(stacking)・TPOT・TPOT(NN)・Auto-sklearn・AutoGluon・AutoKeras・FLAMLのうちTPOTが最も良いという事に
PyCaret 0.5178571428571429
PyCaret(bagging) 0.5496031746031746
PyCaret(voting) 0.5535714285714286
PyCaret(stacking) 0.5496031746031746
TPOT 0.5555555555555556
TPOT(NN) 0.503968253968254
Auto-sklearn 0.5198412698412699
AutoGluon 0.5496031746031746
AutoKeras 0.4861111111111111
FLAML 0.5277777777777778
5. 参考
この記事が気に入ったらサポートをしてみませんか?